

Riverfront Trails Residential Development Traffic Impact Study Update

Missoula, Montana

Prepared For:

Woith Engineering, Inc. 3860 O'Leary Street, Suite A Missoula, MT 59808

July, 2022

Table of Contents

Α.	Executive Summary	1
B.	Project Description	1
C.	Existing Conditions	1
	Adjacent Roadways	2
	Traffic Counts	
	Historical Data	4
	Missoula Connect LRTP	5
	Jeanette Rankin Elementary School	6
	Level of Service	6
	Area Crash Data	7
D.	Proposed Development	8
E.	Trip Generation and Assignment	
F.	Trip Distribution	
G.	Traffic Impacts Outside of the Development	10
H.	Impact Summary & Recommendations	15
Figu Figu	ure 1 – Proposed Development Siteure 2 – Proposed Site Planure 3 –Trip Distribution AM Peak Hourure 4 –Trip Distribution PM Peak Hour	9 11
	List of Tables ble 1 – Historic Average Daily Traffic Data ble 2 – 2021 Level of Service Summary	
	ole 3 – 2021 School Hour Level of Service Summary	
	ole 4 – Trip Generation Rates	
	ole 5 – Projected 2025 NO Build Level of Service	
	ole 6 – Projected 2025 Level of Service Summary with Development	
	ole 7 – Projected School Hour Level of Service Summary	
Tab	ole 8 – Projected Level of Service Summary with Roadway Improvement	14
	ble 9 – Estimated Full-huild ADT Volumes	

Riverfront Trails Residential Development Traffic Impact Study Update

Missoula, Montana

A. EXECUTIVE SUMMARY

The Riverfront Trails development is a 92.43-acre residential and senior living facility proposed west of Lower Miller Creek Drive, along Old Bitterroot Road in Missoula, Montana. Upon anticipated completion by 2030, the development would include, 174 single-family residential units and 110 senior living units, and a 25,000 S.F. religious assembly site. The development would produce up to 2,209 new daily vehicle trips in this area. As proposed, the Riverfront Trails residential development will increase traffic volumes on the surrounding road network and roadway improvements may be warranted with this project and the current background traffic volume growth in this area. At this time, we recommend that the developers discuss the existing LOS issues with the City of Missoula to determine what mitigation measures can be implemented to improve traffic flow characteristics along the northern section of Miller Creek Road. This may include lane improvements at Brooks Street and the installation of a traffic signal or roundabout at Briggs Street. These improvements will be necessary regardless of the construction of the Riverfront Trails development to address existing LOS issues at these locations. Bicycle and pedestrian sidewalk improvements should also be implemented along Lower Miller Creek Road east of the project site to complete the nonmotorized connections to the northeast from the planned development site.

B. PROJECT DESCRIPTION

This document studies the possible effects on the surrounding road system from the proposed Riverfront Trails development located east of Lower Miller Creek Road, along Old Bitterroot Road in Missoula, MT. The document provides information regarding possible traffic impacts in the area and identifies mitigation efforts that the development may require. The project would include up to 174 single-family homes, 110 senior living units, and a religious assembly with a main building footprint estimated at 25,000 S.F.

C. EXISTING CONDITIONS

The Riverfront Trails residential development is proposed on a 92.43-acre parcel of vacant land located west of Lower Miller Creek Road, along Old Bitterroot Road. The site is located in a residential area south of the Brooks Street (Highway 93) and the Bitterroot River. The Linda Vista Public Golf Course is located east of the property and the Jeanette Rankin Elementary School is located south of the property. See **Figure 1** for a location map of the proposed development.

Adjacent Roadways

Brooks Street (US Highway 93 South) is a north/south principle arterial route that extends through the western portion of Missoula and continues south toward Lolo. This section of highway has a four-lane cross-section with additional left-turn lanes at most intersections including that intersection with Miller Creek Road. At Miller Creek Road, Brooks Street has an urban cross-section with a paved width of 86 feet and is signal controlled at the intersection with Miller Creek Road. The speed limit along this section of Brooks Street is 45 MPH which increases to 60 MPH incrementally to the southwest and decreases to 35 MPH ½ mile to the northeast. According to traffic counts conducted by MDT in 2021, the roadway currently carries 32,800 Vehicles per Day (VPD).

Miller Creek Road is a north/south major collector route that extends south from Brooks Street. Miller Creek Road provides access to the residential neighborhoods south of the Bitterroot River on the western edge of Missoula. The road has an urban three-lane cross-section (1 southbound, 2 Northbound) north of Lower Miller Creek Road with a paved width of 42 feet and has pedestrian walkways and bike lanes in both directions. Miller Creek Road

crosses BNSF railroad tracks 50 feet south of the intersection with Brooks Street. The crossing has drop-gates and flashing warning beacons. At the signalized intersection with Brooks Street, the southern leg of Miller Creek Road has a right-only and an all-movement lane. The northern leg (Old US 93) has three separate designated turn lanes. At the intersection with Briggs Street, Miller Creek Road has ample width for a southbound left-only lane. Although the street is not striped for this lane, field observations indicated that drivers are utilizing it as such. The posted speed limit on Miller Creek Road near Brooks Street is 25 MPH which increases to 35 MPH. Traffic data collected by MDT indicates that the road currently carries 11,300 Vehicles per Day (VPD).

Lower Miller Creek Road is a north/south major collector route that extends south from the roundabout intersection at Miller Creek. Lower Miller Creek Road provides access to residential neighborhoods southeast of the Bitterroot River on the western edge of Missoula. Near the proposed development Lower Miller Creek Road takes a 90-degree turn to head south and has a rural two-lane cross-section with a paved width of 22 feet. The posted speed limit on Lower Miller Creek Road is 30 MPH. Lower Miller Creek Road is controlled with a roundabout at the intersection with Miller Creek Road and Upper Miller Creek Road. Traffic data collected by MDT indicates that the road currently carries 2,500 Vehicles per Day (VPD) south of Old Bitterroot Road.

Upper Miller Creek Road is a north/south major collector route which extends south from the roundabout at Miller Creek, Upper Miller Creek Road, and Lower Miller Creek Road. Upper Miller Creek Road provides access to residential neighborhoods south of Miller Creek Road. Upper Miller Creek Road has an urban two-lane cross-section with a paved width of 32 feet and a posted speed limit of 35 MPH. Traffic data collected by MDT indicates that the road currently carries 7,700 VPD.

Briggs Street is a local east/west route that provides access to residential neighborhoods west of Miller Creek Road and south of Brooks Street. Briggs Street terminates at dead-ends 740 feet west of Miller Creek Road and ½ mile east of Miller Creek Road. Briggs Street has an urban two-lane cross-section with a paved width of 32 feet. The posted speed limit on Briggs Street is 25 MPH. Traffic data collected by MDT indicates that the road currently carries 3,100 VPD.

Bigfork Road is an east/west local road that extends west from the STOP controlled intersection with Lower Miller Creek Road providing access to Jeanette Rankin Elementary School and the residential area west of Miller Creek Road and south of the development site. Bigfork Road has an urban cross-section and with a paved width of 32 feet. The speed limit on Bigfork Road is 25 MPH.

Jordan Court is an east/west local cul-de-sac that extends east from the STOP intersection with Lower Miller Creek Road and Bigfork Road providing access to residences east of Lower Miller Creek Road. Jordan Court has an urban cross-section with a paved width of 32 feet and

no posted speed limit. Jordan Court terminates at a dead-end 600 feet east of Lower Miller Creek Road.

Old Bitterroot Road is an east/west local road that provides access to one existing residence and terminates ¼ mile west of Lower Miller Creek Road. Old Bitterroot Road has a rural unpaved cross-section and is STOP controlled at the intersection with Lower Miller Creek Road.

Traffic Counts

In April 2021, Abelin Traffic Services (ATS) collected traffic data at area intersections to evaluate current operational characteristics. These counts included peak-hour turning movement counts and 24-hour volume counts on Lower Miller Creek Road. The peak-hour turning movement counts were performed at the intersections of Brooks Street, Briggs Street Upper Miller Creek Road, and Bigfork Road/Jordan Court. Additional school release traffic data was collected at the Bigfork Road/Jordan Court intersection. Bicycle traffic was included in the total traffic count volumes and accounts for 1-2% of total intersection traffic volumes (5-10 bikes per hour). The raw traffic data is included in **Appendix A** of this report.

Generally, raw traffic data is adjusted for seasonal variation using automatic count site data. However, with the impact of the COVID-19 outbreak, traffic data must also be reviewed for pandemic related variation. ATS obtained traffic data from MDT's automatic continuous count site located along Beckwith Avenue in Missoula (Site #A-068). The continuous count data indicates the traffic counts collected on April 19th and April 20th are 124% of the 2021 AADT (Average Annual Daily Traffic) in this area and 100% of the historic AADT. For a conservative result no factorization applied was to the raw data for the analysis of this project.

Vehicle speed and volume data was also collected along Lower Miller Creek Road just north of the intersection with Bigfork Drive. The recorded ADT data for the study section was 2,349 VPD. This traffic survey suggested that the average vehicle speed on Lower Miller Creek Road was 33 MPH with an 85th percentile speed of 36 MPH for all recorded vehicles. In general, vehicle travel speeds on this section are higher than the posted 30 MPH speed limit. A maximum vehicle speeds of 48 MPH was recorded. These speeds should be taken into account when considering intersection and road designs through this section.

Historic Traffic Data

Abelin Traffic Services obtained historic traffic data for area roadways from the Montana DOT which is presented in **Table 1**. The traffic data from 2020 showed a significant decrease in traffic volumes in this area due to the Covid-19 pandemic. The traffic data history for 2012 to 2021 in this area indicates that traffic volumes in the area south of Brooks Street have increased at an average annual rate of 1.2% over this time period. This growth rate was used to factor

raw data to projected 2024 volumes for intersection analysis upon completion of the Riverfront Trails Residential Development.

Table 1 – Historic Average Daily Traffic

Table 1 - Historic Average Daily Hallic											
Location	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	
US 93 NE of Miller Creek Rd #15-4A-045	33,830	33,820	32,880	34,230	26,150	32,781	30,914	30,759	28,052	32,840	
US 93 at Bitterroot River Bridge #15-4A-046	26,670	25,530	26,580	27,454	26,707	26,960	26,825	22,887	24,464	27,704	
Miller Ck Rd S of Brooks at RR Crossing #32-3A-072	12,740	10,310	11,450	9,863	9,726	12,429	10,796	13,270	11,095	11,323	
Upper Miller Ck Rd 800 ft S of the Y #32-31-068	6,650	5,550	5,640	5,790	5,856	5,809	5,896	7,680	7,142	7,713	
Lower Miller Ck Rd 100 ft SW of the Y #32-3A-069	5,440	5,560	5,660	5,810	5,214	5,172	5,250	5,809	5,402	5,834	
Lower Miller Ck Rd S of 90 deg turn W of L.V. #32-3A-060	1,220	1,800	1,890	1,771	1,826	1,796	1,874	2,485	1,966	2,507	
Lower Miller Ck Rd btwn Brusett & Jack Dr #32-3A-069	770	790	920	900	849	842	855	860	800	1,141	
Briggs St 150 ft W of Gharrett Ave #32-3A-071	3,500	3,310	2,970	3,050	3,084	4,093	4,154	4,179	2,860	3,089	

Missoula Connect Long Range Transportation Plan

The Missoula Connect Long Range Transportation Plan (LRTP) includes recommendations for improvements to the roadways and pedestrian facilities along the section of Lower Miller Creek Road adjacent to the proposed development. The recommended improvements include creating a complete street including bicycle, pedestrian, and streetscape improvements. The project would also include the development of a roundabout at the intersection of Miller Creek Road and Lower Miller Creek Road. This project is currently in the planning and design phase. The LRTP plan does not address existing congestion issues at the intersections of Brooks Street or Briggs Street with Miller Creek Road.

Jeanette Rankin Elementary School

The Jeanette Rankin Elementary School is located south of the proposed Riverfront Trails development site along Bigfork Road. The elementary school currently has 500 enrolled students in grades K-5. School is in session between 8:15 AM to 2:15 PM. Peak school traffic and peak commuter traffic does not generally occur at the same time. The data collected for this report clearly showed separate peak periods in the AM and PM traffic hours for commuter and school traffic. During the morning, the peak commuter period was 7:45-8:00 and the peak school period was 8:15-8:30. In the afternoon, the peak school period was 2:15-2:30 and the peak commuter period was 5:00-5:15. In order to accurately assess the traffic conditions for both commuter and school traffic ATS conducted traffic analysis for both time periods at the intersection of Lower Miller Creek Road with Bigfork Road. The Riverfront Development includes plans for pedestrian connections directly to the school from the internal network of the subdivision. Therefore, little to no traffic from the development will approach the school to the south on Lower Miller Creek Road. The traffic from the proposed residential homes in Riverfront Trails Subdivision will be commuter traffic which will occur during the standard morning and evening commuter peak traffic periods. Traffic generation from the development will be significantly less during the peak school traffic periods.

Although most pedestrian traffic will access the school from the north via internal connections, some pedestrian traffic will likely head west toward Lower Miller Creek to access the school bus line. Lower Miller Creek Road is not built-out to facilitate pedestrian traffic. It was noted in the field that some pedestrian traffic was walking on the street along Miller Creek Road. The build-out of Lower Miller Creek Road to include curb-and-gutter and pedestrian sidewalks was listed as a project in the Missoula Connect Long Range Transportation Plan and is currently in the design phase. Pedestrian safety along Lower Miller Creek Road would increase significantly with the completion of this project.

Level of Service

Using the data collected for this project, ATS conducted a Level of Service (LOS) analysis at area intersections. This evaluation was conducted in accordance with the procedures outlined in the Transportation Research Board's *Highway Capacity Manual (HCM) - Special Report 209* and the Highway Capacity Software (HCS) version 7.9. Intersections are graded from A to F representing the average delay that a vehicle entering an intersection can expect. Typically, a LOS of C or better is considered acceptable for peak-hour conditions.

Table 2 shows the existing LOS for the AM, and PM peak hours without the traffic from the proposed development. The LOS calculations are included in **Appendix C**. The table shows that the Miller Creek Road intersections with Brooks Street and Briggs Street are currently operating with significant delays in the AM and PM peak hours. The only way to correct the LOS issues at the intersection of Brooks Street would be to develop additional turning lanes to accommodate northbound turning traffic at the intersection (at a minimum, a separated

northbound left-turn lane). However, these lanes would need to be developed over the railroad crossing on this leg, which may be difficult to accomplish. The intersection with Briggs Street is near the limit of capacity for a STOP controlled intersection. This intersection will likely meet warrants for the installation of a traffic signal or roundabout. The intersections of Miller Creek Road and Bigfork Road with Lower Miller Creek Road are operating with acceptable LOS ratings. The roundabout at Miller Creek Drive and Lower Miller Creek Drive has reserve capacity to support growth well into the future.

The intersection of Lower Miller Creek Road and Bigfork Road near Jeanette Rankin Elementary School was also evaluated during the AM and PM peak school periods (8:15 AM & 2:15 PM). Currently, the intersection is functioning at an acceptable LOS during the school periods. **Table 3** shows the existing LOS for this intersection without traffic from the proposed development.

Table 2 – 2021 Level of Service Summary

	AM Peak	Hour	PM Peak	Hour
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS
Brooks Street & Miller Creek Road	101	F	118	F
Briggs Street & Miller Creek Road*	15.8/92.1	C/F	32.6/138.1	D/F
Miller Creek Road & Lower Miller Creek Road	9.6	А	8.8	А
Lower Miller Creek Road & Bigfork Road*	10.6/9.2	B/A	10.3/8.6	B/A

^{*}Eastbound/Westbound Side Street LOS and Delay

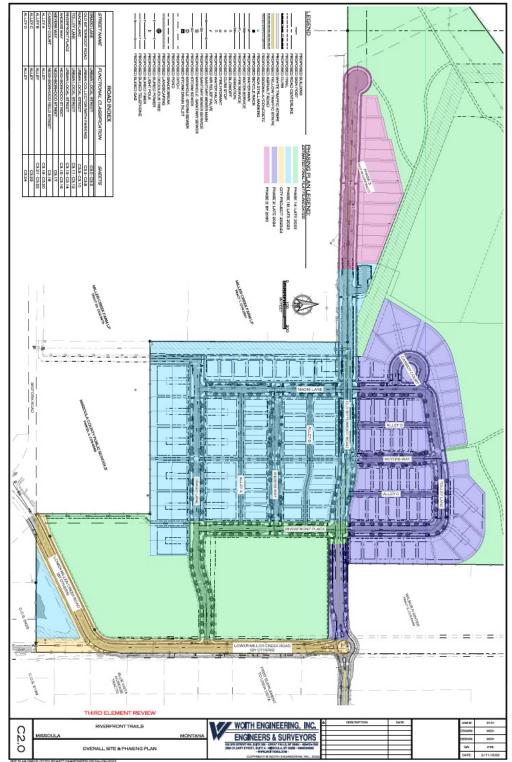
Table 3 – 2021 School Hour Level of Service Summary

	AM Peak Ho	our (8:15)	PM Peak Hour (2:15)			
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Lower Miller Creek Road & Bigfork Road*	23.2/9.2	C/A	11.7/11.0	B/B		

^{*}Eastbound/Westbound Side Street LOS and Delay

Area Crash Data

ATS collected crash data from MDT's public crash site to assess intersections for geometric and roadway characteristic deficiencies. The 5-year MDT data from 2016 to 2020 includes 65 crashes at Brooks Street and Miller Creek Road, six crashes at Miller Creek Road and Briggs Street, five Crashes at the roundabout at Miller Creek Road and Lower Miller Creek Road, and four Crashes at Lower Middle Creek Road and Old Bitterroot Road. Generally, crashes are expressed as a rate of crashes per million vehicles entering (MVE). All intersections analyzed


have crash rates between 0.16 and 1.0. The crash rates at these intersections are within typical ranges and do not suggest that road improvements are needed.

D. PROPOSED DEVELOPMENT

The Riverfront Trails development is currently proposed at the intersection of Old Bitterroot Road and Lower Miller Creek Road. The land to be developed is a 92.43-acre parcel of existing farmland. The development is planned to include two approaches onto Lower Miller Creek Road. The approach onto Old Bitterroot Road at Lower Middle Creek Road is currently planned as a roundabout based on the recommendations from the Miller Creek Road improvements project. The second approach onto Lower Middle Creek Road would be located 650 feet to the south and will include bulb-outs for improved pedestrian safety and traffic calming. Upon completion by 2025, the development would include 174 single-family residential units and 110 senior living units, and an 25,000 S.F. religious assembly. The development is to include internal roadways built to City of Missoula specifications for lane widths and an internal pedestrian connection to Jeanette Rankin Elementary School to the south. The Riverfront Trails site plan is shown in **Figure 2**.

E. TRIP GENERATION AND ASSIGNMENT

ATS performed a trip generation analysis to determine the anticipated future traffic volumes from the proposed development using the trip generation rates contained in Trip Generation (Institute of Transportation Engineers, Tenth Edition). These rates are the national standard and are based on the most current information available to planners. A vehicle "trip" is defined as any trip that either begins or ends at the development site. ATS determined that the critical traffic impacts on the intersections and roadways would occur during the weekday morning and evening peak hours. According to the ITE trip generation rates, at full build-out the Riverfront Trails development would produce 161 AM peak hour trips, 215 PM peak hour trips, and 2,209 daily trips. See Table 4 for detailed trip generation information. Typically religious assemblies produce relatively little traffic during the peak weekday traffic period, but can produce significant amounts of traffic on holidays and Sunday mornings. The ITE manual predicts that the proposed religious assembly would be expected to produce up to 250 peak hour vehicle trips on Sunday mornings. While this is a significant amount of traffic, it is less than the current traffic volumes produced by Jeanette Rankin Elementary School and religious assembly traffic generally occurs when the background traffic volumes on adjacent streets are relatively low on Sunday mornings. Peak traffic generated by religious assemblies are not typically used for roadway design purposes.

Figure 2- Proposed Development

Table 4 - Trip Generation Rates

Land Use	Units	AM Peak Hour Trip Ends per Unit	Total AM Peak Hour Trip Ends	PM Peak Hour Trip Ends per Unit	Total PM Peak Hour Trip Ends	Weekday Trip Ends per Unit	Total Weekday Trip Ends
Single Family	174	0.75	120	0.00	172	0.53	1.627
ITE #210	174	0.75	129	0.99	172	9.52	1,637
Senior Housing ITE #252	110	0.2	22	0.26	29	3.44	378
Church ITE #560	25 KSF	.33	8	.49	12	6.95	174
Total			161		215		2,209

F. TRIP DISTRIBUTION

The traffic distribution and assignment for the proposed development was based upon the existing ADT volumes along the adjacent roadways and the peak-hour turning volumes for the AM and PM Peak hours. Traffic is expected to distribute onto the surrounding road network in the AM and PM peak hours as shown on **Figures 3 & 4**. It is expected that the majority of traffic from the development will travel to and from the northeast on Lower Miller Creek Road to Briggs Street and Brooks Street. A small amount of traffic (~5%) will likely use Lower Miller Creek to the south to reach Jeanette Rankin Elementary School and other destinations in this area. See the model in **Appendix B** for detailed trip distribution information.

G. TRAFFIC IMPACTS OUTSIDE OF THE DEVELOPMENT

ATS analyzed the existing and projected traffic conditions within the study area to determine the anticipated future traffic conditions without the added traffic from the Riverfront Trails subdivision. The results of this traffic analysis are shown below in **Table 5** below. The 2025 'No Build' conditions in this area are similar to the existing conditions and indicate increased delay at the intersections along the northern end of Miller Creek Road at Brooks Street and Briggs Street. These intersections will require roadway improvements in the future regardless of any development of the Riverfront Trails project as described in **Section C**.

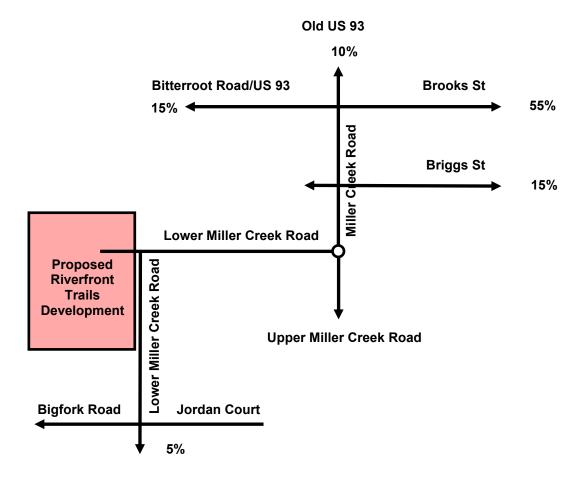


Figure 3 – Trip Distribution AM Peak Hour

Table 5 - Projected 2025 No Build Level of Service

	AM Peak	Hour	PM Peak	Hour		
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Brooks Street & Miller Creek Road	117.2	F	132.1	F		
Briggs Street & Miller Creek Road*	16.4/129	C/F	36.1/202	E/F		
Miller Creek Road & Lower Miller Creek Road	10.6	В	9.4	Α		
Lower Miller Creek Road & Bigfork Road*	10.7/9.2	B/A	10.4/8.6	B/A		

^{*}Eastbound/Westbound Side Street LOS and Delay.

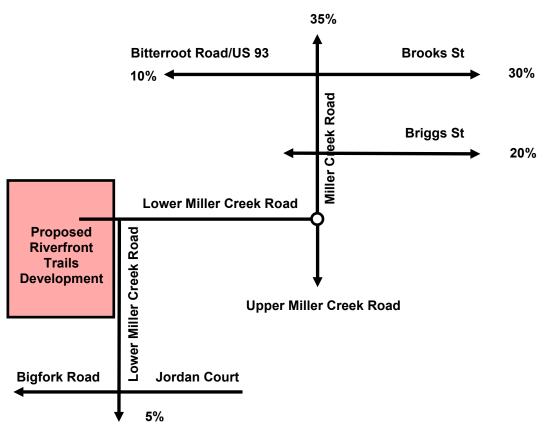


Figure 4 – Trip Distribution PM Peak Hour

The anticipated intersection LOS with the Riverfront Trails development is shown in **Tables 6 &** 7. The traffic volume calculations are included in **Appendix B** of this report. As the table shows, the development of the Riverfront Trails development and the anticipated background traffic volume growth in this area will create additional delay at the area intersections. As traffic volumes in this area increase, it may become necessary to make modifications at the intersections of Miller Creek Road with Briggs Street and Brooks Street. The existing LOS conditions at these intersections is poor (LOS F) and will require major improvements regardless of any development of the Riverfront Trails property. The direct traffic impact from the Riverfront Trails development at these intersections could be 16% and 6% respectively. The impact at the intersections of Lower Miller Creek Road with Miller Creek Road and Bigfork Road could be 16% and 8% respectively but the intersections will continue to operate at acceptable levels. The background traffic volume growth at the intersection of Lower Miller Creek Road and Bigfork Road may cause the intersection to fall to LOS D during the AM peak school periods by the year 2024 if the current growth trends in the area continue. This issue could be corrected by converting the intersection to a four-way STOP. However, the congestion issues at this location are extremely short in duration (15 minutes) and may not necessitate any traffic control improvements. Total traffic volumes along Lower Miller Creek Road will increase to approximately 7,000 VPD and traffic volumes along Miller Creek Road north of the roundabout will increase to approximately 16,000 VPD. Typically, the road capacity for a two-lane roadway is 10,000 to 12,000 VPD and up to 18,000 for three lane roads.

Table 6 – Projected 2025 Level of Service with Development

	AM Peak	Hour	PM Peak	Hour		
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Brooks Street & Miller Creek Road	143.3	F	223	F		
Briggs Street & Miller Creek Road*	18.0/265	C/F	44.5/398	E/F		
Miller Creek Road & Lower Miller Creek Road	13.3	В	11.6	В		
Lower Miller Creek Road & Bigfork Road*	10.8/9.3	B/A	10.5/8.6	B/A		

^{*}Eastbound/Westbound Side Street LOS and Delay.

Table 7 – Projected School Hour Level of Service Summary

	AM Peak Ho	our (8:15)	PM Peak Hour (2:15)			
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Lower Miller Creek Road & Bigfork Road*	27.0/9.2	C/A	12.1/11.3	B/B		

^{*}Eastbound/Westbound Side Street LOS and Delay

The intersection of Miller Creek Road and Briggs Street will require a higher form of traffic control to function adequately with the existing and projected traffic along this section of road with or without the proposed Riverfront Trails development. If the intersection were improved with the installation of a traffic signal or roundabout the operations would be improved significantly to LOS A or B with little vehicle queueing at shown in **Table 8**. It is likely that a traffic signal at this location may function at with less delay and less queueing due to the predominant north/south traffic flow along Miller Creek Road. At this time, we recommend that the developers discuss the existing LOS issues with the City of Missoula and determine what mitigation would be most appropriate to improve the traffic flow characteristics along the northern section of Miller Creek Road. The planned roundabout at Lower Miller Creek Road and Old Bitterroot Road would function at LOS A once completed.

Table 8 – Projected Level of Service with Roadway Improvements

	Al	M Peak I	Hour	Р	our	
Intersection	Delay (Sec.)	LOS	95% Veh Queue	Delay (Sec.)	LOS	95% Veh Queue
Briggs Street & Miller Creek Road Traffic Signal	4.2	А	39 ft.	5.6	А	41 ft.
Briggs Street & Miller Creek Road Roundabout	7.2	Α	65 ft.	10.3	В	177 ft.
Lower Miller Creek Road & Old Bitterroot Road Roundabout	4.3	А	20 ft.	4.2	А	20 ft.

Current vehicle crash trends in this area are within normal operating limits and do not indicate any abnormal crash trends at the study intersections. Traffic from the proposed Riverfront Trails will likely increase the numbers of expected vehicle crashes in proportion with the anticipated increases in traffic loads on the local routes. This increase will be approximately 10% from current conditions, but the existing crash rates will not likely change. The roundabout planned for the intersection of Lower Miller Creek Road and Old Bitterroot Road will likely improve safety at this corner by slowing vehicles traveling through the roundabout.

Currently Miller Creek Road and Lower Miller Creek Road have continuous sidewalks on the south side of the road from Brooks Street to Linda Vista Boulevard, 1,000 feet east of the proposed development site. The route also has marked bike lanes from Briggs Street to Linda Vista Boulevard. The nearest transit stop to the development site is located within the Walmart Shopping Center at Weeping Willow Drive.

The Riverfront Trails development will include sidewalks along all streets and designated bike lanes along Old Bitterroot Road. The City of Missoula has plans to extend the sidewalks along the south side of the street and continue the bike lanes along Lower Miller Creek Road from the project site to Linda Vista Boulevard to complete the bike and pedestrian connections from this area into the greater Missoula area.

ATS also prepared estimates of the total traffic volumes which will likely exist on the road segments within the development at full build-out of the project. These estimates are based on the planned lot layout of the development and the likely travel paths residents will use. The estimated total ADT on the various road segments within the development are shown in **Table 9**.

H. IMPACT SUMMARY & RECOMMENDATIONS

As proposed, the Riverfront Trails residential development will increase traffic volumes on the surrounding road network and roadway improvements may be warranted with this project and the current background traffic volume growth in this area. At this time, we recommend that the developers discuss the existing LOS issues with the City of Missoula to determine what mitigation measures can be implemented to improve traffic flow characteristics along the northern section of Miller Creek Road. This may include lane improvements at Brooks Street and the installation of a traffic signal or roundabout at Briggs Street. These improvements will be necessary regardless of the construction of the Riverfront Trails development to address existing LOS issues at these locations. Bicycle and pedestrian sidewalk improvements should also be implemented along Lower Miller Creek Road east of the project site to complete the nonmotorized connections to the northeast from the planned development site.

Table 9 – Estimated Full-Built ADT Volumes

Road	Segment	ADT Volume
Old Bitterroot Road	West of Naomi Lane	150 VPD
Old Bitterroot Road	Naomi Lane to Riverfront Place	500 VPD
Old Bitterroot Road	West of Lower Miller Creek Rd	1,400 VPD
Naomi Lane	South of Old Bitterroot Road	150 VPD
Naomi Lane	North of Old Bitterroot Road	300 VPD
Riverfront Place	South of Old Bitterroot Road	400 VPD
Riverfront Place	North of Old Bitterroot Road	200 VPD
Drago Lane	Naomi Lane to Riverfront Place	200 VPD
Drago Lane	West of Lower Miller Creek Rd	800 VPD
Trolley Lane	Naomi Lane to Riverfront Place	100 VPD
Anders Way	Naomi Lane to Riverfront Place	200 VPD
Alley A	Naomi Lane to Riverfront Place	200 VPD
Alley B	Naomi Lane to Riverfront Place	200 VPD
Meyers Way	Old Bitterroot Road to Trolly Lane	100 VPD
Alley C	Old Bitterroot Road to Trolly Lane	100 VPD
Alley D	Old Bitterroot Road to Trolly Lane	100 VPD

APPENDIX A

Traffic Data

130 S. Howie Street Helena, MT 59601

File Name: LowerMillerCreekTMC

Site Code : 00000000 Start Date : 4/21/2021

				r Creel	k	Jordan Court Westbound					Maloney Ranch Rd Northbound					Lower Miller Creek Eastbound					
Ot and Time a			uthbo																		
Start Time *** BREAK *		Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Lett	Peds	App. Total	Right	Thru	Lett	Peds	App. Total	Int. Total
DREAN																					
07:30 AM	17	8	1	1	27	4	0	0	0	4	0	42	2	0	44	1	0	10	0	11	86
07:45 AM	25	12	0	Ö	37	2	Ö	Ö	Õ	2	Ö	18	6	Ö	24	0	Ö	10	Ö	10	73
Total	42	20	1	1	64	6	0	0	0	6	0	60	8	0	68	1	0	20	0	21	159
08:00 AM	30	9	1	14	54	1	0	0	0	1	1	21	29	0	51	4	0	19	3	26	132
08:15 AM	45	7	0	8	60	2	0	0	0	2	0	42	22	0	64	8	0	69	8	85	211
*** BREAK *						_									1					1	
Total	75	16	1	22	114	3	0	0	0	3	1	63	51	0	115	12	0	88	11	111	343
*** BREAK *	**																				
02:00 PM	23	17	6	1	47	0	0	1	1	2	0	6	2	0	8	1	3	6	0	10	67
02:15 PM	20	20	3	39	82	8	0	1	0	9	1	26	5	0	32	8	2	28	13	51	174
02:30 PM	7	16	3	0	26	2	0	0	0	2	0	18	0	0	18	4	0	16	0	20	66
*** BREAK *			40	40	455	40				40			7		50	40			40	0.4	007
Total	50	53	12	40	155	10	0	2	1	13	1	50	1	0	58	13	5	50	13	81	307
*** BREAK *	**																				
04:30 PM	10	25	2	0	37	1	0	0	0	1	0	15	1	3	19	2	0	4	1	7	64
04:45 PM	10	30	2	1	43	0	Ö	Ō	2	2	Ō	16	1	1	18	1	Ö	12	1	14	77
Total	20	55	4	1	80	1	0	0	2	3	0	31	2	4	37	3	0	16	2	21	141
05:00 PM	11	14	1	4	30	0	1	0	0	1	0	14	4	3	21	4	0	11	4	19	71
05:15 PM	9	19	2	0	30	2	0	0	0	2	0	21	1	0	22	2	Ö	11	0	13	67
*** BREAK *	**																			- '	
Total	20	33	3	4	60	2	1	0	0	3	0	35	5	3	43	6	0	22	4	32	138
*** BREAK *	**																				
Grand Total	207	177	21	68	473	22	1	2	3	28	2	239	73	7	321	35	5	196	30	266	1088
Apprch %	43.8	37.4	4.4	14.4		78.6	3.6	7.1	10.7		0.6	74.5	22.7	2.2		13.2	1.9	73.7	11.3		
Total %	19	16.3	1.9	6.2	43.5	2	0.1	0.2	0.3	2.6	0.2	22	6.7	0.6	29.5	3.2	0.5	18	2.8	24.4	
Unshifted	207	177	21	68	473	22	1	2	3	28	2	239	73	7	321	35	5	196	30	266	1088
% Unshifted	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

130 S. Howie Street Helena, MT 59601

File Name: MillerBrooksTMC

Site Code : 00000000 Start Date : 4/21/2021

							Cro	una Di	intod	Llaabiff	ad D	onk 1	Donl	. 1							
	M	ILLER	= K		intea-	Unshift		ank i ILLER													
	IVI		uthbo			93 Westbound							und								
Start Time	Right		Left		App. Total	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	astbou Left		App. Total	Int. Total
*** BREAK *			Lon	1 000	лрр. готаг	ragne		Loit	1 000	дрр. гота	rtigiit		LOIL	1 000	лрр. готаг	ragin		Lon	1 000	лрр. гота	int. rotai
2.12.11																					
07:30 AM	5	5	4	0	14	1	100	49	0	150	164	19	16	0	199	12	393	38	0	443	806
07:45 AM	10	14	1	0	25	2	124	61	0	187	189	29	17	0	235	20	384	35	0	439	886
Total	15	19	5	0	39	3	224	110	0	337	353	48	33	0	434	32	777	73	0	882	1692
08:00 AM	8	13	5	0	26	0	117	60	0	177	121	5	18	3	147	13	282	33	0	328	678
08:15 AM	3	7	3	0	13	0	169	31	0	200	132	16	26	0	174	19	365	25	0	409	796
*** BREAK *																					
Total	11	20	8	0	39	0	286	91	0	377	253	21	44	3	321	32	647	58	0	737	1474
*** BREAK *	**																				
04:30 PM	52	15	49	2	118	21	205	13	0	239	34	28	10	1	73	3	307	106	0	416	846
04:45 PM	77	12	53	2	144	23	210	7	0	240	38	35	11	1	85	5	309	100	0	414	883
Total	129	27	102	4	262	44	415	20	0	479	72	63	21	2	158	8	616	206	0	830	1729
05:00 PM	59	14	40	5	118	32	219	14	0	265	39	59	21	0	119	5	343	107	0	455	957
05:15 PM	64	11	40	0	115	35	199	20	0	254	47	37	10	0	94	4	314	124	0	442	905
*** BREAK *					000	07	110			540			0.4		040		0.5.7	004		007	1000
Total	123	25	80	5	233	67	418	34	0	519	86	96	31	0	213	9	657	231	0	897	1862
*** BREAK ***																					
Grand Total	278	91	195	9	573	114	1343	255	0	1712	764	228	129	5	1126	81	2697	568	0	3346	6757
Apprch %	48.5	15.9	34	1.6		6.7	78.4	14.9	0		67.9	20.2	11.5	0.4		2.4	80.6	17	0		
Total %	4.1	1.3	2.9	0.1	8.5	1.7	19.9	3.8	0	25.3	11.3	3.4	1.9	0.1	16.7	1.2	39.9	8.4	0	49.5	
Unshifted	278	91	195	9	573	114	1343	255	0	1712	764	228	129	5	1126	81	2697	568	0	3346	6757
% Unshifted	100	100	100	100	100	100	100	100	0	100	100	100	100	100	100	100	100	100	0	100	100
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

130 S. Howie Street Helena, MT 59601

File Name: Not Named 9

Site Code : 00000000 Start Date : 4/21/2021

	Miller Creek Rd Upper Miller Cr Rd Lower Miller Crk Rd																				
		Mille	r Cree	ek Rd								Uppe	r Milleı	r Cr Ro	t	L					
		So	uthbo	und			W	estbo	und			No	orthbo	und							
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK *		11110	LOIL	1 003	Арр. Тотаг	rtigiit	11110	LOIL	i cus	Арр. тогат	rtigrit	Timu	LOIL	i cus	Арр. Тотаг	rtigitt	11110	LOIL	1 003	Арр. Готаі	IIII. TOTAL
07.00.414		07	_		- 4	١ .	•	•	•	ا م	•		•					404	•	400	004
07:30 AM	27	27	0	0	54	0	0	0	0	0	0	144	0	0	144	2	0	134	0	136	334
07:45 AM	53	32_	1_	0	86	0	0	0	0	0	0	145	1_	0	146	0	1	97	0	98	330
Total	80	59	1	0	140	0	0	0	0	0	0	289	1	0	290	2	1	231	0	234	664
08:00 AM	54	49	1	0	104	0	0	0	0	0	0	77	5	0	82	3	2	79	0	84	270
08:15 AM	43	33	0	0	76	0	0	0	0	0	0	111	3	0	114	6	1	121	0	128	318
*** BREAK *	**					-	_	_	_	- 1	_			-	'	_			_		
Total	97	82	1	0	180	0	0	0	0	0	0	188	8	0	196	9	3	200	0	212	588
Total	31	02	'	U	100	, 0	U	U	U	0	U	100	U	U	130	3	3	200	U	212	300
*** BREAK *	**																				
DREAN																					
			_	_			_	_	_	- 1	_		_	_		_	_		_		
04:30 PM	50	52	0	0	102	0	0	0	0	0	0	52	0	0	52	0	0	29	0	29	183
04:45 PM	81	111	1	0	193	0	0	0	0	0	0	69	1_	0	70	1	0	51	0	52	315
Total	131	163	1	0	295	0	0	0	0	0	0	121	1	0	122	1	0	80	0	81	498
05:00 PM	87	115	0	0	202	0	0	0	0	0	0	77	4	0	81	1	0	60	0	61	344
05:15 PM	93	122	1	0	216	0	0	Ō	0	ō	Ō	74	1	0	75	1	Ō	44	0	45	336
*** BREAK *			•	Ū		, ,	Ū	ŭ	ŭ	١	ŭ		•	ŭ		•	·		Ū		000
Total	180	237	1	0	418	0	0	0	0	0	0	151	5	0	156	2	0	104	0	106	680
Total	100	231	'	U	410	, 0	U	U	U	0	U	131	J	U	130	_	U	104	U	100	000
*** DDE 41/ *	**																				
*** BREAK *																					
						ı															1
Grand Total	488	541	4	0	1033	0	0	0	0	0	0	749	15	0	764	14	4	615	0	633	2430
Apprch %	47.2	52.4	0.4	0		0	0	0	0		0	98	2	0		2.2	0.6	97.2	0		
Total %	20.1	22.3	0.2	0	42.5	0	0	0	0	0	0	30.8	0.6	0	31.4	0.6	0.2	25.3	0	26	
Unshifted	488	541	4	0	1033	0	0	0	0	0	0	749	15	0	764	14	4	615	0	633	2430
% Unshifted																					
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 1	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ö	ō	Ō	Ō	Ö	Ö	0	Ö	Ō	0	Ö	Ö	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bank 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
/0 Dalik Z	, 0	U	U	U	U	1 0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

130 S. Howie Street Helena, MT 59601 406-459-1443

File Name : BriggsMillerTMC Site Code : 00000000

Site Code : 00000000 Start Date : 4/22/2021

	Groups Printed- Unshifted - Bank 1 - Bank 2 MILLER BRIGGS MILLER BRIGGS																				
		MILLE				BRIGGS						MILLE									
			uthbo			Westbound							orthbo								
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK *	***																				
07:30 AM	0	61	5	0	66	7	0	10	0	17	38	230	2	0	270	0	0	1	0	1	354
07:45 AM	0	80	10	0	90	9	0	18	2	29	35	222	2	0	259	0	1_	0	0	1	379
Total	0	141	15	0	156	16	0	28	2	46	73	452	4	0	529	0	1	1	0	2	733
00.00 414	_	00	0	0	04	40	4	20	0	22	24	477	4	0	202	4	4	0	0	2	200
08:00 AM	0	82 71	9	0	91	12	1	20	0	33	24	177	1	0	202	1	1	0 1	0	2	328
08:15 AM	0	71	11	0	82	10	0	15	0	25	33	211	0	0	244	0	0	1	0	1	352
*** BREAK * Total	0	153	20	0	173	22	1	35	0	58	57	388	1	0	446	1	1	1	0	3	680
rotar		100	20	O	.,,			00	Ū	00	01	000	•	Ū	110			•	O	0	000
*** BREAK *	***																				
04:30 PM	0	112	2	0	114	14	1	32	0	47	21	89	0	0	110	0	0	1	0	1	272
04:45 PM	0	140	5	0	145	17	2	33	0	52	26	106	1	0	133	0	1	0	0	1	331
Total	0	252	7	0	259	31	3	65	0	99	47	195	1	0	243	0	1	1	0	2	603
05:00 PM	1	162	10	0	173	10	1	36	1	48	19	113	0	0	132	0	0	0	0	0	353
05:15 PM	2	166	8	0	176	5	0	37	0	42	17	115	2	0	134	0	0	2	0	2	354
*** BREAK *	***										'									'	
Total	3	328	18	0	349	15	1	73	1	90	36	228	2	0	266	0	0	2	0	2	707
*** BREAK *	*** BREAK ***																				
Grand Total	3	874	60	0	937	84	5	201	3	293	213	1263	8	0	1484	1	3	5	0	9	2723
Apprch %	0.3	93.3	6.4	0		28.7	1.7	68.6	1		14.4	85.1	0.5	0		11.1	33.3	55.6	0		
Total %	0.1	32.1	2.2	0	34.4	3.1	0.2	7.4	0.1	10.8	7.8	46.4	0.3	0	54.5	0	0.1	0.2	0	0.3	
Unshifted	3	868	59	0	930	84	5	199	3	291	212	1256	8	0	1476	1	3	5	0	9	2706
% Unshifted	100	99.3	98.3	0	99.3	100	100	99	100	99.3	99.5	99.4	100	0	99.5	100	100	100	0	100	99.4
Bank 1	0	3	1	0	4	0	0	2	0	2	1	6	0	0	7	0	0	0	0	0	13
% Bank 1	0	0.3	1.7	0	0.4	0	0	1	0	0.7	0.5	0.5	0	0	0.5	0	0	0	0	0	0.5
Bank 2	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	4
% Bank 2	0	0.3	0	0	0.3	0	0	0	0	0	0	0.1	0	0	0.1	0	0	0	0	0	0.1

For Project: LowerMillerCreek Project Notes: Location/Name: Outgoing Report Generated: 4/22/2021 1 MPH 13:40 Speed Intervals Time Intervals Instant Traffic Report From 4/20/2021 18:00:00 4/21/2021 18:59:59 through 85th Percentile Speed 36 MPH 85th Percentile Vehicles 1029 Max Speed 48 MPH 4/21/2021 14:22:04 1211 1162 Total Vehicles AADT: Volumes weekly counts 7 Day Time 5 Day Average Daily 605 605 AM Peak 08:00 121 121 PM Peak 05:00 162 162 Speed Speed Limit: 35 85th Percentile Speed: 36 32.6 Average Speed: Monday N/A Tuesday Wednesday Thursday Friday Saturday Sunday 24 23.5 N/A N/A N/A N/A N/A N/A N/A N/A Count over limit 187 % over limit Avg Speeder N/A 16 9 38.0 37.9 N/A N/A N/A N/A N/A **Class Counts** Number 15 VEH_SM 1.2 VEH_MED 1145 94.5 VEH_LG 51 4.2 VEH_MED = sedan, [VEH SM=motorcycle, VEH_LG = truck] Day/Time Ending 85th pctl (MPH) Total Cnts 85th pctl cnts Max Speed % Speeders Avg Speeder 4/20/2021 07:00:00 PM 36.0 17.2% 4/20/2021 08:00:00 PM 4/20/2021 09:00:00 PM 40.0 **No Data** 40 8 9 38.4 88.9% 4/20/2021 10:00:00 PM **No Data** 4/21/2021 07:00:00 AM 30 O 30 0.0 0.0% 1 1 4/21/2021 08:00:00 AM 74 87 16.1% 36.0 41 37.4 4/21/2021 09:00:00 AM 35.0 103 121 40 37.3 13.2% 4/21/2021 10:00:00 AM 4/21/2021 11:00:00 AM 37.0 35.0 41 64 48 75 41 43 37.1 33.3% 10.7% 39.4 52 60 100 4/21/2021 12:00:00 PM 36.0 61 45 38.5 19.7% 4/21/2021 01:00:00 PM 4/21/2021 02:00:00 PM 36.0 70 43 38.1 17.1% 35.0 118 40 37.6 10.2% 4/21/2021 03:00:00 PM 36.0 98 48 38.5 16.5% 115 4/21/2021 04:00:00 PM 37.0 87 102 48 38.0 33.3% 4/21/2021 05:00:00 PM 4/21/2021 06:00:00 PM 35.0 100 118 42 38.0 12.7%

45

42

44

48

Max Speed

37.7

38.0

38.0

37.9

Avg Speeder

14.2%

19.4%

% Speeders

23.5%

16.9%

35.0

36.0

37.0

36.0

85th pctl (MPH)

4/21/2021 07:00:00 PM

Day/Time Ending

4/21/2021 12:00:00 AM

4/21/2021 06:59:59 PM

138

26

87

943

85th pctl cnts

162

31

Total Cnts

102

1109

Project Notes: Location/Name: Incoming Report Generated: 4/22/2021 13:40 1 MPH Speed Intervals Time Intervals Instant Traffic Report From 4/20/2021 18:00:00 4/21/2021 18:59:59 through 85th Percentile Speed 36 MPH 85th Percentile Vehicles 1051 Max Speed 48 MPH 4/21/2021 15:46:54 1237 1187 Total Vehicles AADT: Volumes weekly counts Time 5 Day 7 Day Average Daily 618 618 AM Peak 08:00 206 206 PM Peak 02:00 136 136 Speed Speed Limit: 35 85th Percentile Speed: 36 32.76 Average Speed: Monday N/A Tuesday Thursday Friday Saturday Sunday 18 28.1 N/A N/A N/A N/A N/A N/A N/A N/A Count over limit % over limit Avg Speeder N/A 21.6 38.6 N/A N/A N/A N/A N/A 38.0 **Class Counts** Number VEH_SM 0.3 VEH_MED 1195 96.6 VEH_LG 3.1 VEH_MED = sedan, [VEH SM=motorcycle, VEH_LG = truck] Day/Time Ending 85th pctl (MPH) Total Cnts 85th pctl cnts Max Speed % Speeders Avg Speeder 4/20/2021 07:00:00 PM 38.0 27.6% 4/20/2021 08:00:00 PM 4/20/2021 09:00:00 PM 36.0 **No Data** 5 6 36 36.0 33.3% 4/20/2021 10:00:00 PM **No Data** 4/21/2021 07:00:00 AM 38 N 10 12 39 38.7 25.0% 4/21/2021 08:00:00 AM 103 19.8% 36.0 121 41 37.4 4/21/2021 09:00:00 AM 36.0 175 41 37.2 18.0% 4/21/2021 10:00:00 AM 4/21/2021 11:00:00 AM 38.0 36.0 85 55 100 46 42 38.2 38.0 37.0% 23.1% 65 50 66 54 116 4/21/2021 12:00:00 PM 36.0 59 45 37.9 25.4% 4/21/2021 01:00:00 PM 4/21/2021 02:00:00 PM 37.0 78 43 37.6 24.4% 63 42 27.0% 38.0 37.9 4/21/2021 03:00:00 PM 35.0 136 46 39.0 14.0% 4/21/2021 04:00:00 PM 37.0 90 106 48 39.2 19.8% 4/21/2021 05:00:00 PM 4/21/2021 06:00:00 PM 37.7 37.5 37.0 101 119 41 24.4% 15.5% 35.0 71 84 43 4/21/2021 07:00:00 PM 24 44 16.7% 35.0 20 39.3

For Project:

Day/Time Ending

4/21/2021 12:00:00 AM

4/21/2021 06:59:59 PM

LowerMillerCreek

85th pctl (MPH)

38 N

36.0

85th pctl cnts

54

997

Total Cnts

1173

Max Speed

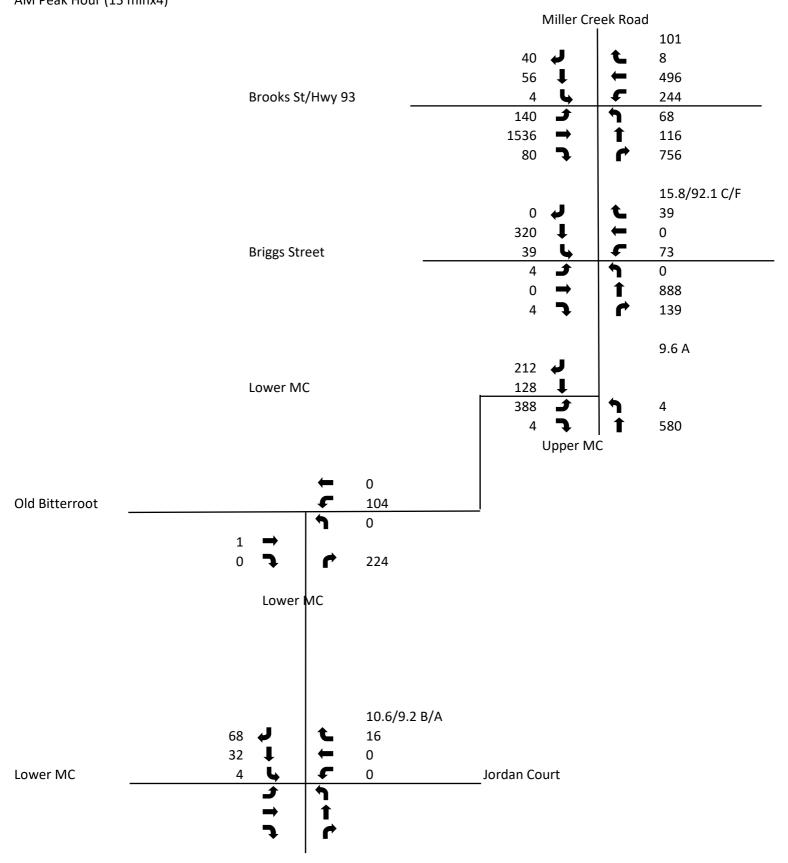
46

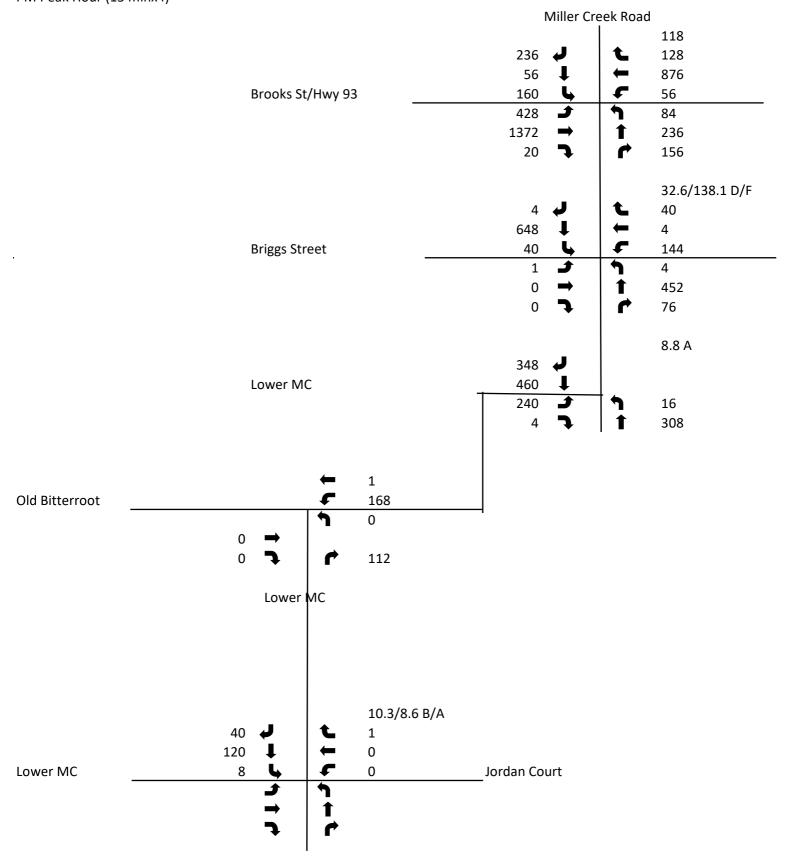
48

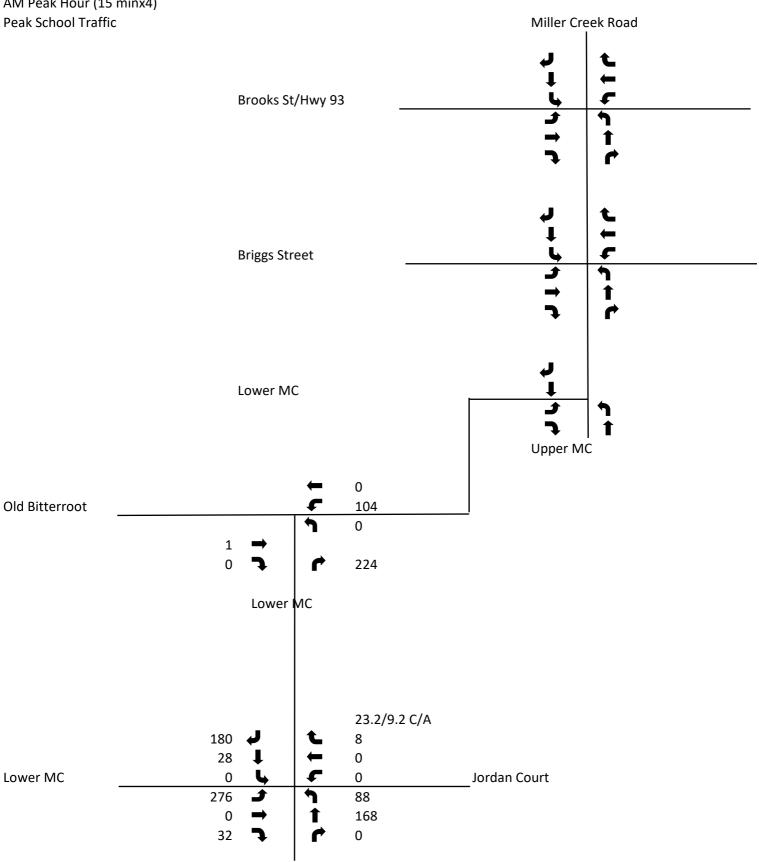
Avg Speeder

38.6

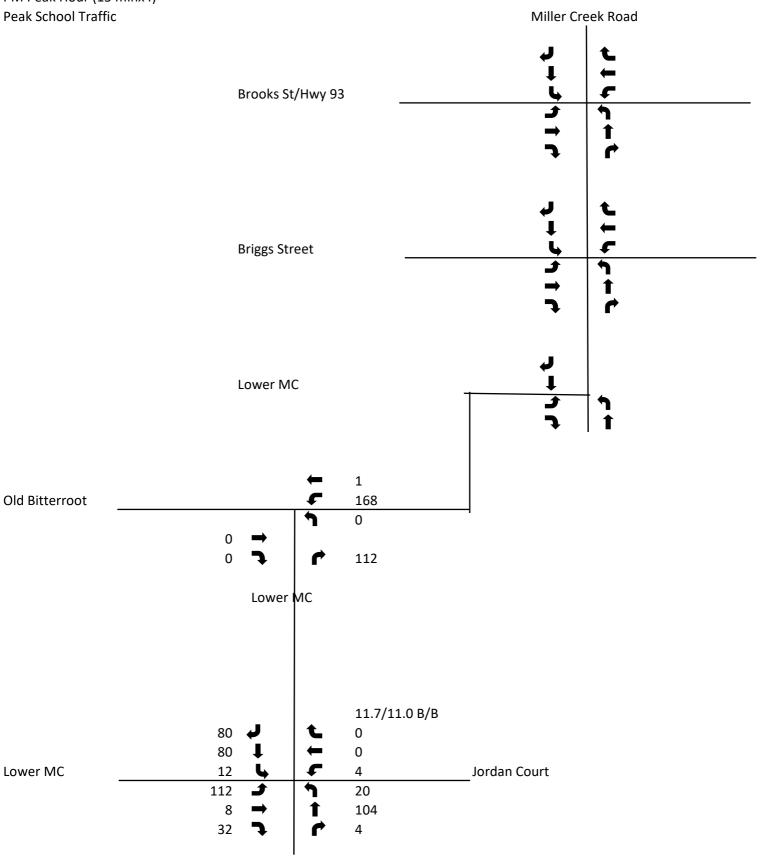
38.0

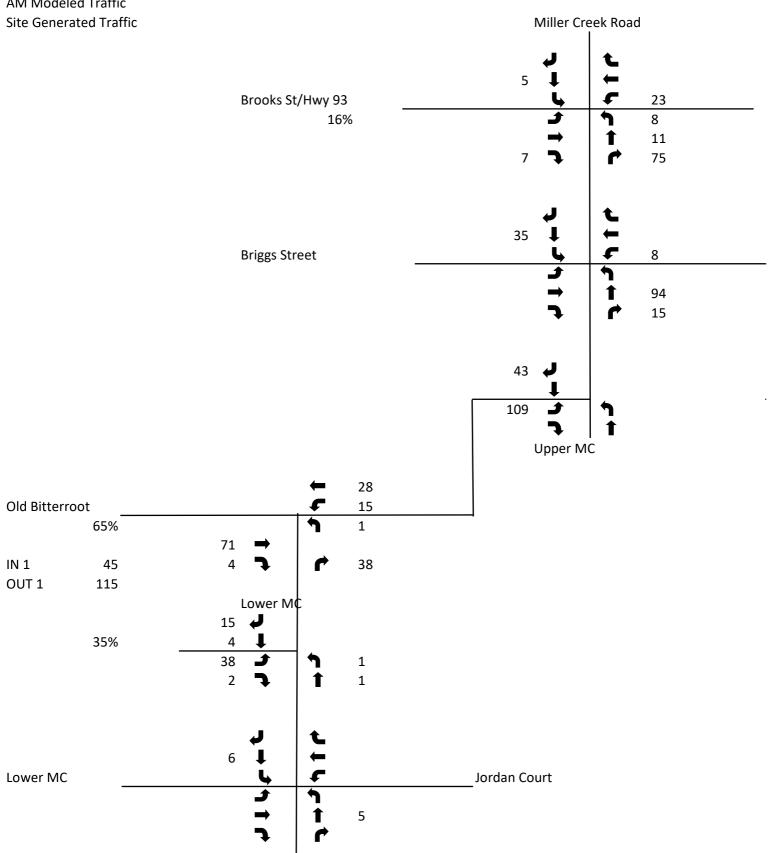

% Speeders

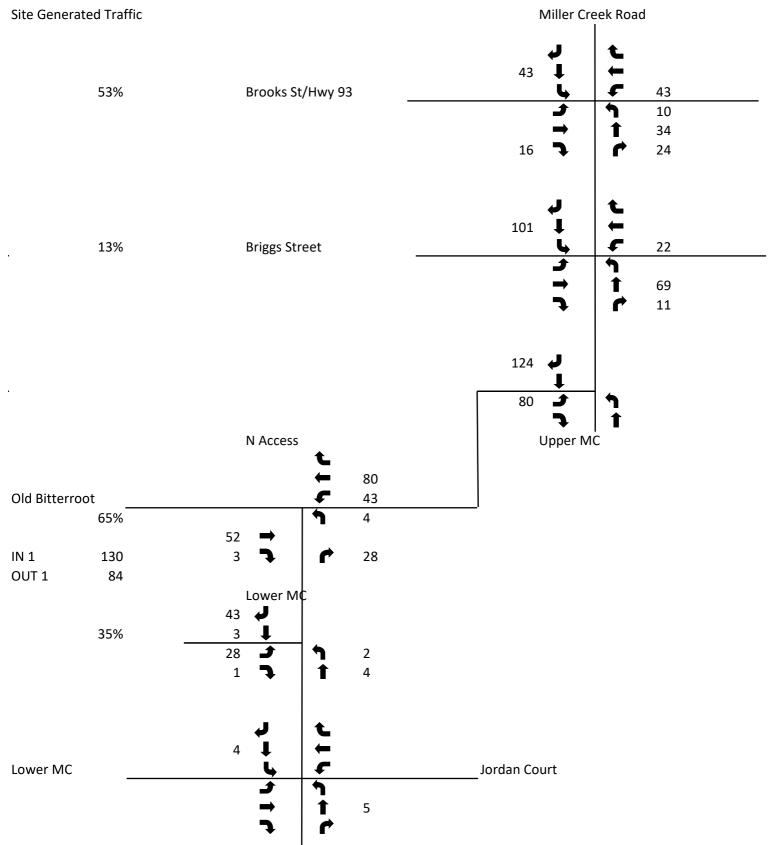

28.1%

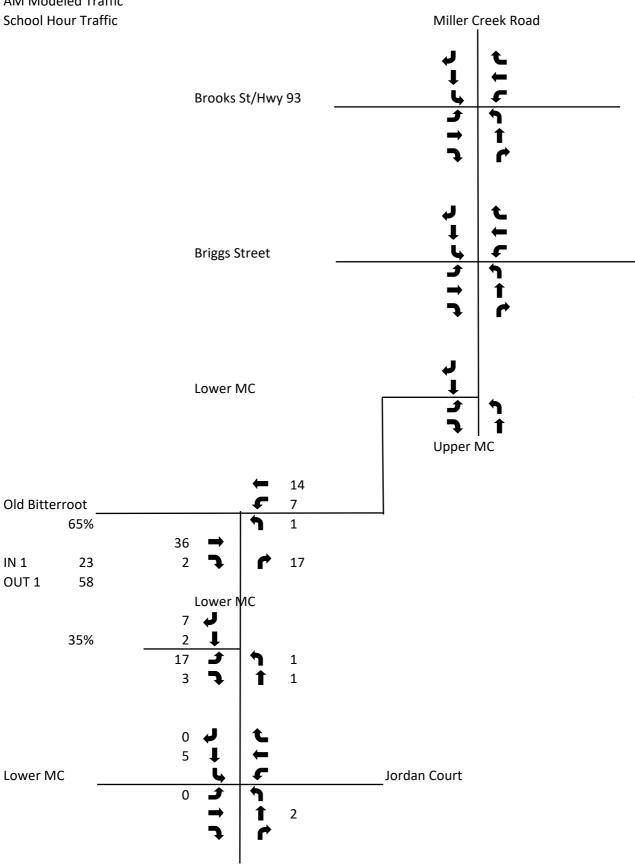

21.6%

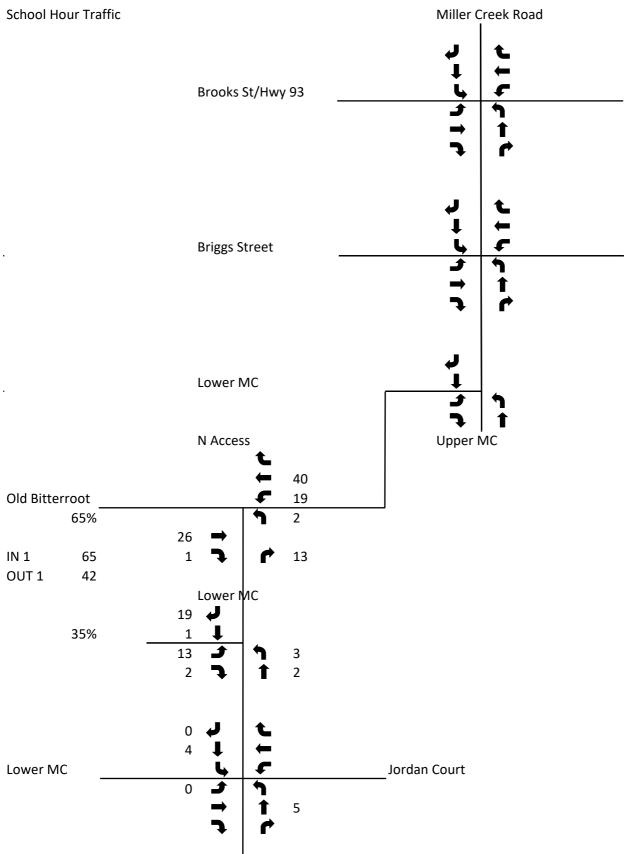
APPENDIX B

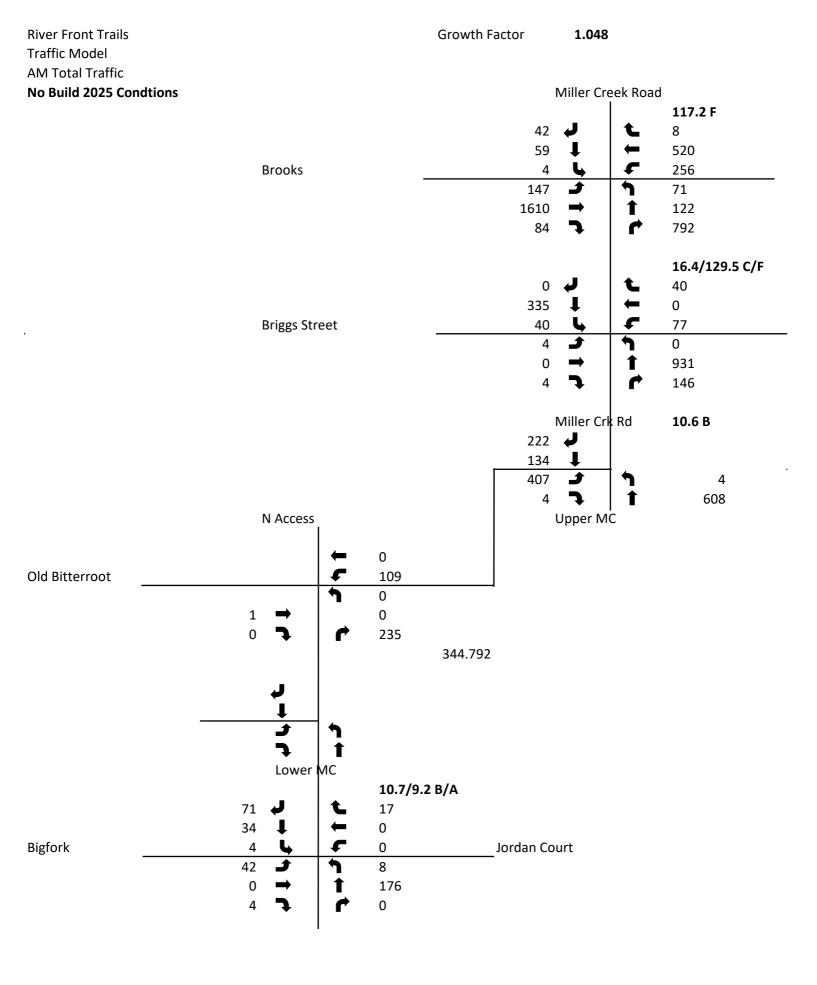

Traffic Model



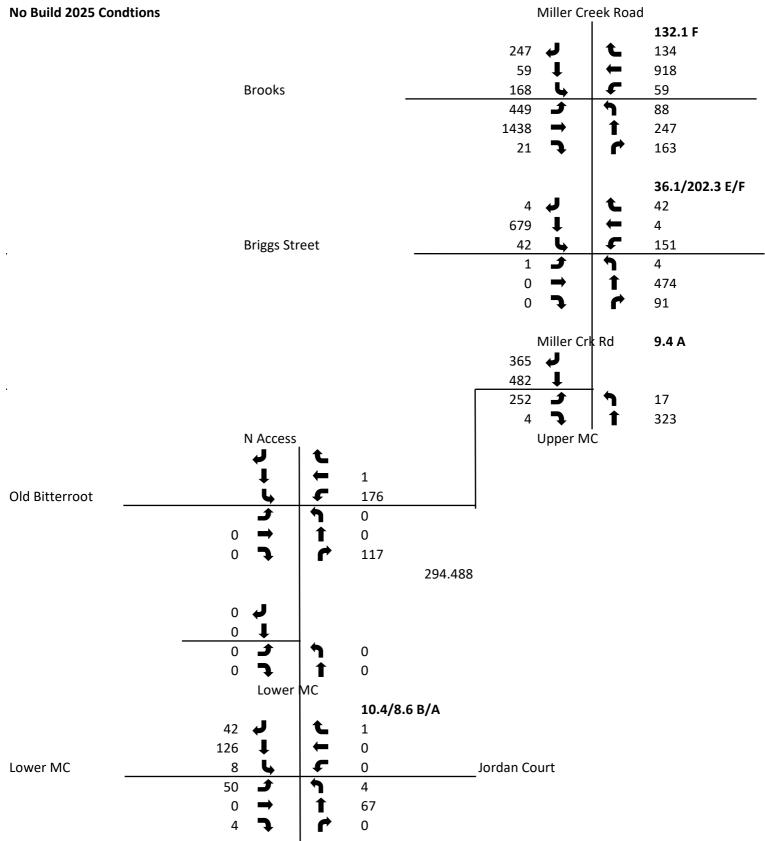

River Front Trails Traffic Model PM Peak Hour (15 minx4) Peak School Traffic

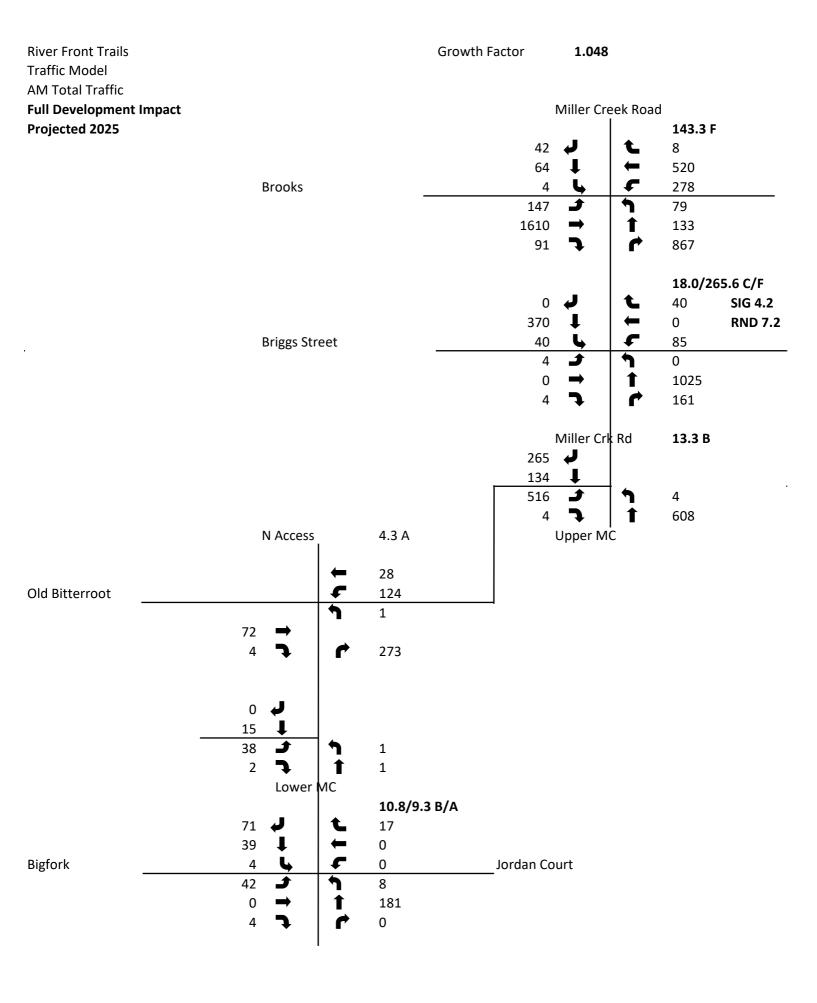

River Front Trails
Traffic Model
AM Modeled Traffic
Site Congressed Traffic

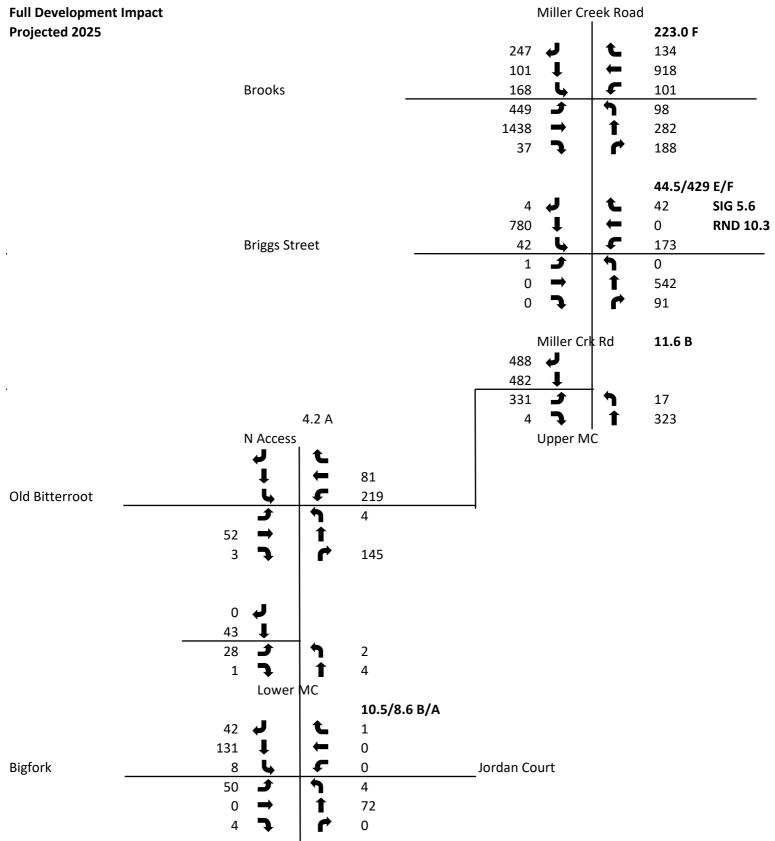

River Front Trails Traffic Model PM Modeled Traffic Site Generated Traffic



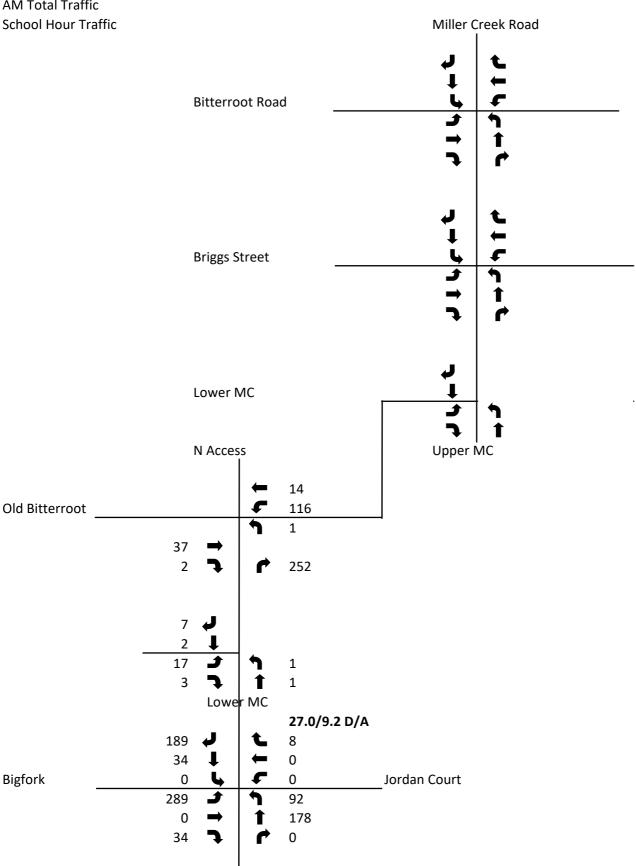
River Front Trails
Traffic Model
AM Modeled Traffic
School Hour Traffic



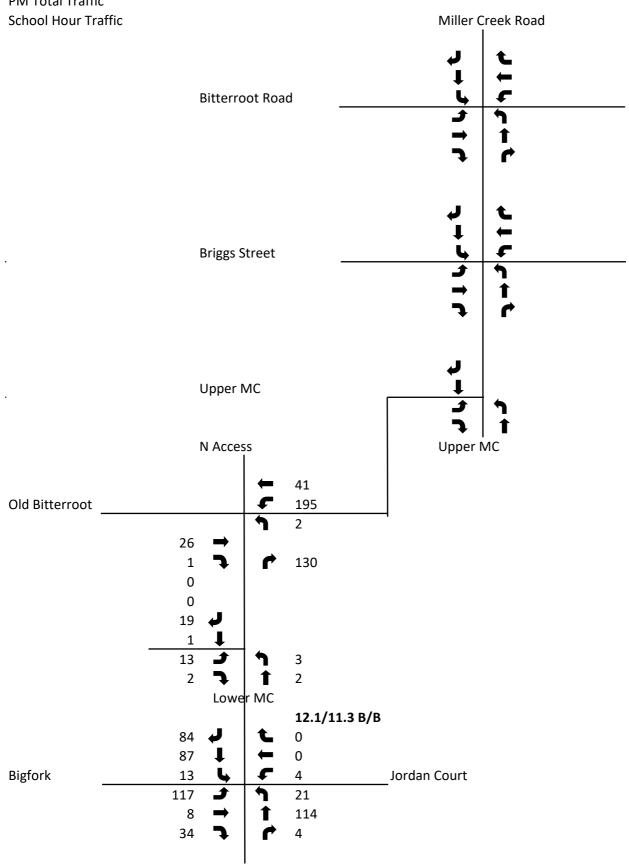

River Front Trails Traffic Model AM Modeled Traffic School Hour Traffic



River Front Trails Traffic Model PM Total Traffic

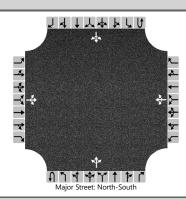


River Front Trails Traffic Model PM Total Traffic



River Front Trails
Traffic Model
AM Total Traffic
School Hour Traffic

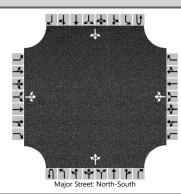
Growth Factor 1.048


River Front Trails
Traffic Model
PM Total Traffic

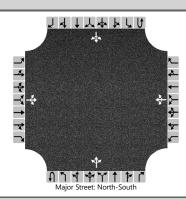
APPENDIX C

LOS Calculations

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Lower Miller & Bigfork
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	4/20/2021	East/West Street	Bigfork
Analysis Year	2021	North/South Street	Lower Miller Creek
Time Analyzed	AM Peak Hour	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Riverfront Trails Residential Development		

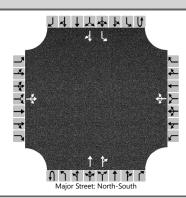

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		40	0	4		0	0	16		8	168	0		4	32	68
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)		0 0														
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			44				16			8				4		
Capacity, c (veh/h)			688				874			1486				1404		
v/c Ratio			0.06				0.02			0.01				0.00		
95% Queue Length, Q ₉₅ (veh)			0.2				0.1			0.0				0.0		
Control Delay (s/veh)			10.6				9.2			7.4				7.6		
Level of Service (LOS)	В						А			А				А		
Approach Delay (s/veh)	10.6 9.2							0.4 0.3					.3			
Approach LOS	B A															

	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	RLA	Intersection	Lower Miller & Bigfork						
Agency/Co.	ATS	Jurisdiction	City of Missoula						
Date Performed	4/20/2021	East/West Street	Bigfork						
Analysis Year	2021	North/South Street	Lower Miller Creek						
Time Analyzed	AM School Peak Hour	Peak Hour Factor	1.00						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Riverfront Trails Residential Development								


Vehicle Volumes and Adj	justme	nts																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)		276	0	32		0	0	8		88	168	0		0	28	180		
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3				
Proportion Time Blocked																		
Percent Grade (%)		0 0																
Right Turn Channelized																		
Median Type Storage		Undivided																
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1				
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13				
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23				
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)			308				8			88				0				
Capacity, c (veh/h)			499				874			1357				1404				
v/c Ratio			0.62				0.01			0.06				0.00				
95% Queue Length, Q ₉₅ (veh)			4.1				0.0			0.2				0.0				
Control Delay (s/veh)			23.2				9.2			7.8				7.6				
Level of Service (LOS)	C						А			А				А				
Approach Delay (s/veh)	23.2 9.2									3	.1		0.0					
Approach LOS		C A																

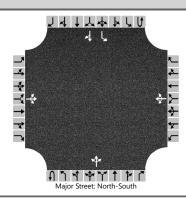
	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	RLA	Intersection	Lower Miller & Bigfork						
Agency/Co.	ATS	Jurisdiction	City of Missoula						
Date Performed	4/20/2021	East/West Street	Bigfork						
Analysis Year	2021	North/South Street	Lower Miller Creek						
Time Analyzed	PM Peak Hour	Peak Hour Factor	1.00						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Riverfront Trails Residential Development								

Vehicle Volumes and Adj	ustme	nts																
Approach		Eastb	oound			Westl	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0		
Configuration			LTR				LTR				LTR				LTR			
Volume (veh/h)		48	0	4		0	0	1		4	64	0		8	120	40		
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3				
Proportion Time Blocked																		
Percent Grade (%)			0			(0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1				
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13				
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23				
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)			52				1			4				8				
Capacity, c (veh/h)			731				998			1413				1532				
v/c Ratio			0.07				0.00			0.00				0.01				
95% Queue Length, Q ₉₅ (veh)			0.2				0.0			0.0				0.0				
Control Delay (s/veh)			10.3				8.6			7.6				7.4				
Level of Service (LOS)			В				А			А				А				
Approach Delay (s/veh)		10	0.3			8	.6			0	.5			0	.4			
Approach LOS			В			,	A											


	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	RLA	Intersection	Lower Miller & Bigfork						
Agency/Co.	ATS	Jurisdiction	City of Missoula						
Date Performed	4/20/2021	East/West Street	Bigfork						
Analysis Year	2021	North/South Street	Lower Miller Creek						
Time Analyzed	PM School Peak Hour	Peak Hour Factor	1.00						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Riverfront Trails Residential Development								

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		112	8	32		4	0	0		20	104	4		12	80	80
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)	0 0															
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			152				4			20				12		
Capacity, c (veh/h)			689				601			1413				1476		
v/c Ratio			0.22				0.01			0.01				0.01		
95% Queue Length, Q ₉₅ (veh)			0.8				0.0			0.0				0.0		
Control Delay (s/veh)			11.7				11.0			7.6				7.5		
Level of Service (LOS)	В						В			А				А		
Approach Delay (s/veh)	11.7				11.0			1.3				0.6				
Approach LOS	В				В											

Generated: 5/24/2021 1:56:41 PM

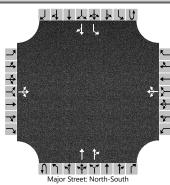

	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	RLA	Intersection	Miller Creek Road & Brigg						
Agency/Co.	ATS	Jurisdiction	City of Missoula						
Date Performed	4/20/2021	East/West Street	Briggs Street						
Analysis Year	2021	North/South Street	Miller Creek Road						
Time Analyzed	AM Peak Hour	Peak Hour Factor	1.00						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Riverfront Trails Residential Development								

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	2	0	0	1	1	0
Configuration			LTR				LTR				Т	TR		L		TR
Volume (veh/h)		4	0	4		73	0	39			888	139	0	39	320	4
Percent Heavy Vehicles (%)		3	3	3		3	3	3					3	3		
Proportion Time Blocked																
Percent Grade (%)		0 0														
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.5	6.5	6.2		7.5	6.5	6.9						4.1		
Critical Headway (sec)		7.56	6.56	6.26		7.56	6.56	6.96						4.16		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3						2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33						2.23		
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)			8				112							39		
Capacity, c (veh/h)			342				140							666		
v/c Ratio			0.02				0.80							0.06		
95% Queue Length, Q ₉₅ (veh)			0.1				5.0							0.2		
Control Delay (s/veh)			15.8				92.1							10.7		
Level of Service (LOS)	С						F							В		
Approach Delay (s/veh)	15.8 92.1												1	.2		
Approach LOS	C F					F										

Generated: 5/24/2021 2:01:27 PM

	HCS7 Two-Way Stop	o-Control Report							
General Information		Site Information							
Analyst	RLA	Intersection	Miller Creek Road & Brigg						
Agency/Co.	ATS	Jurisdiction	City of Missoula						
Date Performed	4/20/2021	East/West Street	Briggs Street						
Analysis Year	2021	North/South Street	Miller Creek Road						
Time Analyzed	PM Peak Hour	Peak Hour Factor	1.00						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Riverfront Trails Residential Development								

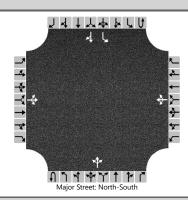
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	1	1	0
Configuration			LTR				LTR				LTR			L		TR
Volume (veh/h)		1	0	0		144	4	40		4	452	76		40	648	4
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)		0 0														
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	T		1				188			4				40		
Capacity, c (veh/h)			131				177			930				1034		
v/c Ratio			0.01				1.06			0.00				0.04		
95% Queue Length, Q ₉₅ (veh)			0.0				9.1			0.0				0.1		
Control Delay (s/veh)			32.6				138.1			8.9				8.6		
Level of Service (LOS)	D						F			А				А		
Approach Delay (s/veh)	32.6 138.1									0	.1			0	.5	
Approach LOS	D F															


	HCS	57 Rc	ound	labc	outs F	Rej	port										
General Information		_			_	_	_			natio	า				_		
Analyst	RLA			П		14				Inters	ection		T	Mille	r & Lov	wer Millle	er
Agency or Co.	ATS						← `			E/W S	Street Na	me		Lowe	r Mille	r Creek	
Date Performed	4/20/	2021								N/S S	treet Nar	ne		Mille	r Creek	:	
Analysis Year	2021				4 1	w	‡ε 8	1		Analy	sis Time	Period (h	rs)	0.25			
Time Analyzed	AM P	eak Hou	ır		₹\					Peak	Hour Fac	tor		1.00			
Project Description	Riverf	front trai	ils				→ V †			Jurisc	liction			City	of Miss	oula	
Volume Adjustment	s and	Site C	harac	teristic	:s												
Approach	П	E	EB			١	NB				N	В	$\neg \neg$			SB	
Movement	U	L	Т	R	U	L	Т	R	₹	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	0	0)	0	0	1	0	0	0	1	0
Lane Assignment			L	R								נז					TR
Volume (V), veh/h	0	388		4				\top		0	4	580		0		128	212
Percent Heavy Vehicles, %	3	3		3						3	3	3		3		3	3
Flow Rate (VPCE), pc/h	0	400		4						0	4	597		0		132	218
Right-Turn Bypass		No	one			N	one				No	ne				None	
Conflicting Lanes			1								1					1	
Pedestrians Crossing, p/h			0								()				0	
Critical and Follow-I	stmen	t															
Approach				EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Bypas	ss L	eft	Right	E	Bypass	Left	Right	Bypas	s L	.eft	Right	Bypass
Critical Headway (s)				4.9763					Т			4.9763		Т		4.9763	
Follow-Up Headway (s)				2.6087					T			2.6087				2.6087	
Flow Computations,	Capac	city aı	nd v/c	Ratios	5												
Approach		Ī		EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Вурая	ss L	eft	Right	E	Bypass	Left	Right	Bypas	s L	_eft	Right	Bypass
Entry Flow (v _e), pc/h				404					Т			601		Т		350	
Entry Volume, veh/h				392					T			583				340	
Circulating Flow (v _c), pc/h		\neg		132		\top		1001				400		Т		4	
Exiting Flow (vex), pc/h				0				222				997				136	
Capacity (c _{pce}), pc/h		\neg		1206	П				Τ			918	Т	Т		1374	
Capacity (c), veh/h				1171					T			891				1334	
v/c Ratio (x)				0.33								0.65		Т		0.25	
Delay and Level of S	ervice	,															
Approach	ever of Service					Т		WB				NB		Т		SB	
			Right	Вурая	ss L	eft	Right	E	Bypass	Left	Right	Bypas	s L	_eft	Right	Bypass	
				6.3								14.6				4.9	
ane LOS A				А								В				А	
95% Queue, veh 1.5				1.5								5.0				1.0	
Approach Delay, s/veh	ch Delay, s/veh 6.3											14.6				4.9	
Approach LOS		A										В				Α	
Intersection Delay, s/veh LC)S					9.6								A			

				HC:	S7 Ro	und	labo	outs l	Re	port							
General Information							Sit	e Info	orn	natio	า						
Analyst	RLA			T		14				Inters	ection		T	Mille	r & Lov	ver Millle	r
Agency or Co.	ATS						←			E/W S	Street Na	me		Lowe	er Miller	r Creek	
Date Performed	4/20/	2021								N/S S	treet Na	me		Mille	r Creek		
Analysis Year	2021				◀ ↓	w	∓E 8	1		Analy	sis Time	Period (h	ırs)	0.25			
Time Analyzed	PM Pe	eak Hou	r		≺ \					Peak	Hour Fac	tor		1.00			
Project Description	Riverf	front trai	ls				→ V †	1		Jurisd	liction			City	of Misso	oula	
Volume Adjustments	s and	Site C	harac	teristic	:s												
Approach			B			١	NB				N	В				SB	
Movement	U	L	Т	R	U	L	Т	F	₹	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	0	C)	0	0	1	0	0	0	1	0
Lane Assignment			L	.R								Ľ	Т		<u>'</u>		TR
Volume (V), veh/h	0	240		4			T	Т		0	16	308		0	Π	460	348
Percent Heavy Vehicles, %	3	3		3						3	3	3		3		3	3
Flow Rate (VPCE), pc/h	0	247		4			T	\top		0	16	317		0		474	358
Right-Turn Bypass		N	one			N	one				No	ne			1	Vone	
Conflicting Lanes			1								,	1				1	
Pedestrians Crossing, p/h			0								()				0	
Critical and Follow-U	Jp Hea	adway	/ Adju	stmen	ıt												
Approach		П		EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Bypas	s L	eft	Right	E	Bypass	Left	Right	Вура	SS	Left	Right	Bypass
Critical Headway (s)		\neg		4.9763					Т			4.9763	3		\neg	4.9763	
Follow-Up Headway (s)				2.6087					T			2.6087	7			2.6087	
Flow Computations,	Capac	city a	nd v/c	Ratio	s												
Approach		Ī		EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Bypas	s L	eft	Right	E	Bypass	Left	Right	Вура	SS	Left	Right	Bypass
Entry Flow (v _e), pc/h				251					Ť			333				832	
Entry Volume, veh/h				244					T			323				808	
Circulating Flow (v _c), pc/h		\neg		474				580				247				16	
Exiting Flow (vex), pc/h				0				374				564				478	
Capacity (c _{pce}), pc/h		\neg		851	Τ				Τ			1073	Т	T	T	1358	
Capacity (c), veh/h				826					T			1041				1318	
v/c Ratio (x)				0.29					Т			0.31				0.61	
Delay and Level of S	ervice																
Approach				EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Bypas	s L	eft	Right	E	Bypass	Left	Right	Вура	ss	Left	Right	Bypass
			7.6					T			6.6				10.0		
Lane LOS A				А								А				В	
95% Queue, veh 1.2				1.2					T			1.3				4.4	
Approach Delay, s/veh	oach Delay, s/veh 7.6											6.6				10.0	
Approach LOS		A										А				В	
Intersection Delay, s/veh LO	S			8.8								A					

HCS7 Signalized Intersection Results Summary 1 4 144 1 12 14 **General Information Intersection Information** 0.250 ATS Duration, h Agency RLA Analyst Analysis Date Apr 20, 2021 Area Type Other PHF Jurisdiction Time Period AM Peak Hour 1.00 Urban Street Brooks Analysis Year 2021 **Analysis Period** 1> 7:00 Brooks & Miller Creek File Name BrooksAM.xus Intersection **Project Description** Riverfront Trails **Demand Information** EB **WB** NB SB Approach Movement R L R L R R 244 496 8 Demand (v), veh/h 140 1536 80 68 116 756 4 56 40 **Signal Information** 2 瓜 ولله Cycle, s 140.0 Reference Phase 2 <u>"17</u> Offset, s 0 Reference Point End Green 6.0 3.0 50.1 0.0 64.0 0.9 Uncoordinated No Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 4.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 1 7 4 Case Number 1.1 4.0 1.1 4.0 0.0 13.0 1.1 3.0 Phase Duration, s 10.0 68.0 13.0 71.0 0.0 54.1 4.9 59.0 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.3 0.0 3.0 0.0 0.0 3.4 3.0 3.4 Queue Clearance Time (g_s), s 7.9 11.0 52.1 2.2 4.6 Green Extension Time (g_e), s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 Phase Call Probability 1.00 1.00 1.00 0.14 1.00 1.00 1.00 1.00 0.00 0.00 Max Out Probability **Movement Group Results** EΒ WB NB SB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 140 812 804 244 253 251 184 756 4 56 40 1810 1900 1867 1810 1900 1889 133 1610 1810 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 5.9 56.8 9.0 11.2 11.2 6.0 50.1 0.2 2.6 2.0 Queue Service Time (g_s), s 57.5 2.0 Cycle Queue Clearance Time (q c), s 5.9 56.8 57.5 9.0 11.2 11.2 50.1 50.1 0.2 2.6 0.42 0.38 Green Ratio (g/C) 0.50 0.46 0.46 0.53 0.48 0.48 0.36 0.39 0.44 904 Capacity (c), veh/h 478 868 853 183 909 83 681 63 746 702 Volume-to-Capacity Ratio (X) 0.293 0.935 0.943 1.336 0.278 0.278 2.221 1.111 0.064 0.075 0.057 Back of Queue (Q), ft/ln (50 th percentile) 63.9 765.6 768.7 392.1 126.7 126.2 411.1 909.2 2.1 29 18.9 Back of Queue (Q), veh/ln (50 th percentile) 2.6 30.6 30.7 15.7 5.1 5.0 16.4 36.4 0.1 1.2 8.0 Queue Storage Ratio (RQ) (50 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.2 40.4 Uniform Delay (d 1), s/veh 19.4 36.1 36.3 39.8 22.0 22.0 36.8 26.6 22.8 586.3 Incremental Delay (d 2), s/veh 0.1 18.4 19.7 183.5 8.0 8.0 69.1 0.2 0.0 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 19.5 54.5 56.0 223.3 22.7 22.7 628.5 109.5 37.0 26.6 22.9 Level of Service (LOS) В D Ε С С F F D С С 52.4 D 88.2 F 211.1 F 25.5 С Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 101.3 F **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 1.92 В В 2.29 2.29 2.11 В В Bicycle LOS Score / LOS 1.94 В 1.10 Α 2.04 В 0.65 Α

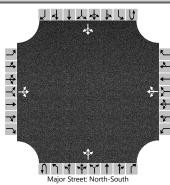
HCS7 Signalized Intersection Results Summary 1 4 144 1 12 14 **General Information Intersection Information** 0.250 ATS Duration, h Agency RLA Analyst Analysis Date Apr 20, 2021 Area Type Other PM Peak Hour PHF 1.00 Jurisdiction Time Period Urban Street Brooks Analysis Year 2021 **Analysis Period** 1> 7:00 Brooks & Miller Creek File Name BrooksPM.xus Intersection **Project Description** Riverfront Trails **Demand Information** EB **WB** NB SB Approach Movement R L R L R L R 20 876 Demand (v), veh/h 428 1372 56 128 84 236 156 160 56 236 2 **Signal Information** 泒 ولله Cycle, s 140.0 Reference Phase 2 ₹ <u>"17</u> Offset, s 0 Reference Point End Green 5.4 15.6 41.8 7.0 50.2 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 4.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 0.0 0.0 0.0 0.0 **Timer Results EBL EBT WBL** WBT NBL **NBT** SBL SBT **Assigned Phase** 5 2 6 3 8 4 1 7 Case Number 1.1 4.0 1.1 4.0 0.0 13.0 1.1 3.0 Phase Duration, s 29.1 65.4 9.4 45.8 0.0 54.2 11.0 65.2 Change Period, (Y+Rc), s 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Max Allow Headway (MAH), s 3.3 0.0 3.0 0.0 0.0 3.3 3.0 3.3 Queue Clearance Time (g_s), s 24.2 4.9 50.4 9.0 11.6 Green Extension Time (g_e), s 0.9 0.0 0.1 0.0 0.0 1.6 0.0 1.6 Phase Call Probability 1.00 0.89 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 Max Out Probability SB **Movement Group Results** ΕB WB NB Approach Movement L Т R L Т R L Т R L Т R **Assigned Movement** 5 2 12 1 6 16 3 8 18 7 4 14 Adjusted Flow Rate (v), veh/h 428 697 695 56 514 490 320 156 160 56 236 1810 1900 1890 1810 1900 1815 225 1610 1810 1900 1610 Adjusted Saturation Flow Rate (s), veh/h/ln 22.2 44.6 44.7 2.9 35.7 35.7 6.0 9.2 7.0 2.4 9.6 Queue Service Time (g_s), s Cycle Queue Clearance Time (q c), s 22.2 44.6 44.7 2.9 35.7 35.7 48.4 9.2 7.0 2.4 9.6 0.30 0.36 Green Ratio (g/C) 0.51 0.44 0.44 0.35 0.30 0.40 0.41 0.44 0.62 Capacity (c), veh/h 456 857 852 174 592 566 110 620 322 805 970 Volume-to-Capacity Ratio (X) 0.939 0.814 0.815 0.321 0.867 0.867 2.907 0.252 0.496 0.070 0.243 Back of Queue (Q), ft/ln (50 th percentile) 326.4 564.6 562.7 31.7 472.5 454.1 723.9 92.1 86 27.2 82.5 Back of Queue (Q), veh/ln (50 th percentile) 13.1 22.6 22.5 1.3 18.9 18.2 29.0 3.7 3.4 1.1 3.3 Queue Storage Ratio (RQ) (50 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 45.4 Uniform Delay (d 1), s/veh 29.5 33.3 33.4 33.1 45.4 38.3 29.3 32.7 23.9 13.0 861.6 Incremental Delay (d 2), s/veh 27.1 8.4 8.4 0.4 15.7 16.3 0.1 0.4 0.0 0.0 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 56.5 41.7 41.8 33.5 61.2 61.8 899.9 29.4 33.1 23.9 13.0 Level of Service (LOS) Ε D D С F Ε F С С С В 45.2 D 60.0 Е 614.6 F 21.5 С Approach Delay, s/veh / LOS Intersection Delay, s/veh / LOS 117.7 F **Multimodal Results** ΕB WB NB SB Pedestrian LOS Score / LOS 1.92 В 2.13 В 2.29 2.28 В В Bicycle LOS Score / LOS 1.99 В 1.36 Α 1.27 Α 1.23 Α


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Miller Creek Road & Brigg
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	4/20/2021	East/West Street	Briggs Street
Analysis Year	2025	North/South Street	Miller Creek Road
Time Analyzed	AM Projected Peak Hour	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Riverfront Trails Residential Development		

					Majo	Street: No	th-South	J								
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	2	0	0	1	1	0
Configuration			LTR				LTR				Т	TR		L		TR
Volume (veh/h)		4	0	4		85	0	40			1025	161	0	40	370	0
Percent Heavy Vehicles (%)		3	3	3		3	3	3					3	3		
Proportion Time Blocked																
Percent Grade (%)			0				0									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		7.5	6.5	6.2		7.5	6.5	6.9						4.1		
Critical Headway (sec)		7.56	6.56	6.26		7.56	6.56	6.96						4.16		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3						2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33						2.23		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			8				125							40		
Capacity, c (veh/h)			284				97							579		
v/c Ratio			0.03				1.28							0.07		
95% Queue Length, Q ₉₅ (veh)			0.1				8.8							0.2		
Control Delay (s/veh)			18.0				265.6							11.7		
Level of Service (LOS)			С				F							В		
Approach Delay (s/veh)		18	3.0			26	5.6							1	.1	
Approach LOS		С					F									

Generated: 7/20/2022 10:07:43 AM

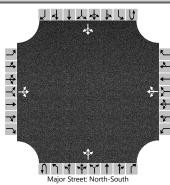
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Miller Creek Road & Brigg
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	4/20/2021	East/West Street	Briggs Street
Analysis Year	2025	North/South Street	Miller Creek Road
Time Analyzed	PM Projected Peak Hour	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Riverfront Trails Residential Development		


Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	1	1	0
Configuration			LTR				LTR				LTR			L		TR
Volume (veh/h)		1	0	0		173	0	42		0	542	91		42	780	4
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)			0			(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			1				215			0				42		
Capacity, c (veh/h)			92				123			830				945		
v/c Ratio			0.01				1.75			0.00				0.04		
95% Queue Length, Q ₉₅ (veh)			0.0				16.4			0.0				0.1		
Control Delay (s/veh)			44.5				428.8			9.3				9.0		
Level of Service (LOS)			E				F			А				А		
Approach Delay (s/veh)		44	1.5			42	8.8			0	.0			0	.5	
Approach LOS		44.5 E					F									

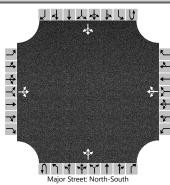
Generated: 7/20/2022 10:58:10 AM

				HCS	57 Ro	unda	bou	ıts Re	eport							
General Information	1						Site	Infor	matio	n						
Analyst	RLA			\neg		4			Inter	section			Mille	r & Low	ver Millle	r
Agency or Co.	ATS					←			E/W	Street Na	me		Lowe	r Miller	Creek	
Date Performed	4/20/	/2021		The same of the sa					N/S S	Street Na	me		Mille	r Creek		
Analysis Year	2025				4 +	w+s	E	1	Analy	ysis Time	Period (h	ırs)	0.25			
Time Analyzed	AM P	rojected	Peak Ho	ur	-{\				Peak	Hour Fac	tor		1.00			
Project Description	River	front tra	ils				1		Juriso	diction			City	of Misso	oula	
Volume Adjustments	s and	Site C	harac	teristic	s		and the same					·				
Approach		ı	EB			WB	3		T	N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0
Lane Assignment			L	.R							Ľ	г		<u>' </u>		TR
Volume (V), veh/h	0	516		4				П	0	4	608		0	Т	134	265
Percent Heavy Vehicles, %	3	3		3					3	3	3		3		3	3
Flow Rate (VPCE), pc/h	0	531		4	\neg				0	4	626		0		138	273
Right-Turn Bypass		N	one			Non	ne			No	ne			١	None	
Conflicting Lanes			1								1				1	
Pedestrians Crossing, p/h			0							()				0	
Critical and Follow-U	Jp He	adwa	y Ad ju	stmen	t											
Approach				EB		T		WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Left	t F	Right	Bypass	Left	Right	Вура	ss I	_eft	Right	Bypass
Critical Headway (s)				4.9763							4.9763	3	Т		4.9763	
Follow-Up Headway (s)				2.6087							2.6087	7			2.6087	
Flow Computations,	Capa	city a	nd v/c	Ratios	;											
Approach				EB		Т		WB			NB		Т		SB	
Lane			Left	Right	Bypas	s Left	t F	Right	Bypass	Left	Right	Вура	ss I	_eft	Right	Bypass
Entry Flow (v _e), pc/h				535				\Box			630				411	
Entry Volume, veh/h				519							612				399	
Circulating Flow (v _c), pc/h				138				1161			531		Т		4	
Exiting Flow (vex), pc/h				0				277			1157				142	
Capacity (c _{pce}), pc/h				1199							803				1374	
Capacity (c), veh/h				1164							780				1334	
v/c Ratio (x)				0.45							0.78				0.30	
Delay and Level of S	ervice	•														
Approach				EB				WB			NB				SB	
Lane Left Rig					Bypas	s Left	t F	Right	Bypass	Left	Right	Вура	ss I	_eft	Right	Bypass
Lane Control Delay (d), s/veh 7				7.8							23.2				5.3	
Lane LOS A											С				Α	
95% Queue, veh 2.3											7.9				1.3	
Approach Delay, s/veh 7.8											23.2				5.3	
Approach LOS				А							С				Α	
Intersection Delay, s/veh LO)S	13.3											В			

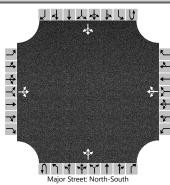
				HC:	57 Ro	und	abo	uts R	lep	port							
General Information							Site	e Info	rm	natior	ı						
Analyst	RLA					14		1	Ī	Inters	ection			Mill	er & Lo	wer Millle	er
Agency or Co.	ATS						- `		Ì	E/W S	Street Na	me		Low	er Mille	r Creek	
Date Performed	4/20/	2021								N/S S	treet Nar	ne		Mill	er Creel	ζ	
Analysis Year	2025				◀ ↓	W	N ↓ E 8	1		Analy	sis Time	Period (h	ırs)	0.25	5		
Time Analyzed	PM P	rojected	Peak Ho	ur	-{\					Peak	Hour Fac	tor		1.00)		
Project Description	River	front tra	ils				→ V †		Ì	Jurisd	liction			City	of Miss	oula	
Volume Adjustments	s and	Site C	harac	teristic	:s												
Approach		-	EB			V	VB		Т		N	В				SB	
Movement	U	L	Т	R	U	L	Т	R		U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	0	0	T	0	0	1	0	0	0	1	0
Lane Assignment			L	R								Ľ	Г				TR
Volume (V), veh/h	0	331		4				Т		0	17	323		0	Т	482	488
Percent Heavy Vehicles, %	3	3		3						3	3	3		3		3	3
Flow Rate (VPCE), pc/h	0	341		4					T	0	18	333		0		496	503
Right-Turn Bypass		N	one			No	one				No	ne				None	
Conflicting Lanes			1						T		1					1	
Pedestrians Crossing, p/h			0								()				0	
Critical and Follow-U	Jp He	adway	y Adju	stmen	t												
Approach	•	Ī		EB		Т		WB				NB		Т		SB	
Lane			Left	Right	Bypas	s Le	eft	Right	В	Bypass	Left	Right	Вура	ass	Left	Right	Bypass
Critical Headway (s)				4.9763	7.	+				,,		4.9763				4.9763	71
Follow-Up Headway (s)				2.6087					r			2.6087	,			2.6087	
Flow Computations,	Capac	city a	nd v/c	Ratio	<u> </u>	_							_	_			
Approach	Спри			EB		$\overline{}$		WB		1		NB		т		SB	
Lane			Left	Right	Bypas	s le	eft	Right	l _B	Bypass	Left	Right	Вура	ass	Left	Right	Bypass
Entry Flow (v _e), pc/h			Leit	345	Бураз			Tugiit		уразз	Leit	351	Бурс	.55	Leit	999	Буразз
Entry Volume, veh/h				335					H			341				970	
Circulating Flow (v _c), pc/h				496		+		692				341		+		18	
Exiting Flow (vex), pc/h				0				521				674				500	
Capacity (cpce), pc/h				832	т	+	П		Т			975	Т	+		1355	
Capacity (c), veh/h				808					t			946				1315	
v/c Ratio (x)				0.41								0.36				0.74	
Delay and Level of S	ervice																
Approach				EB		Т		WB				NB		Т		SB	
Lane Left Ri					Bypas	s Le	eft	Right	В	Bypass	Left	Right	Вура	ass	Left	Right	Bypass
				9.6								7.7				13.7	
ane LOS A				А								А		\top		В	
95% Queue, veh 2.1				2.1					Г			1.7				7.2	
Approach Delay, s/veh	ach Delay, s/veh 9.6											7.7				13.7	
Approach LOS		А										А				В	
Intersection Delay, s/veh LO	S		11.6											В			


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Lower Miller & Bigfork
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	4/20/2021	East/West Street	Bigfork
Analysis Year	2025	North/South Street	Lower Miller Creek
Time Analyzed	AM Projected Peak Hour	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Riverfront Trails Residential Development		

					Majo	r Street: Nor	th-South	J								
Vehicle Volumes and Adj	ustme	nts														
Approach	Π	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		42	0	4		0	0	17		8	181	0		4	39	71
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)			0			(0									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			46				17			8				4		
Capacity, c (veh/h)			665				859			1474				1388		
v/c Ratio			0.07				0.02			0.01				0.00		
95% Queue Length, Q ₉₅ (veh)			0.2				0.1			0.0				0.0		
Control Delay (s/veh)			10.8				9.3			7.5				7.6		
Level of Service (LOS)			В				А			А				А		
Approach Delay (s/veh)		10	0.8			9	.3			0	.4			0	.3	
Approach LOS		В				,	Α									


Generated: 7/20/2022 10:05:56 AM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	Lower Miller & Bigfork
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	4/20/2021	East/West Street	Bigfork
Analysis Year	2025	North/South Street	Lower Miller Creek
Time Analyzed	PM Projected Peak Hour	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Riverfront Trails Residential Development		


					Majo	r Street: Nor	th-South	J								
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		50	0	4		0	0	1		4	72	0		8	131	42
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)			0			(0									
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			54				1			4				8		
Capacity, c (veh/h)			709				987			1398				1522		
v/c Ratio			0.08				0.00			0.00				0.01		
95% Queue Length, Q ₉₅ (veh)			0.2				0.0			0.0				0.0		
Control Delay (s/veh)			10.5				8.6			7.6				7.4		
Level of Service (LOS)			В				А			А				А		
Approach Delay (s/veh)		10	0.5			8	.6			0	.4			0	.4	
Approach LOS		В				,	Α									

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	RLA	Intersection	Lower Miller & Bigfork									
Agency/Co.	ATS	Jurisdiction	City of Missoula									
Date Performed	4/20/2021	East/West Street	Bigfork									
Analysis Year	2025	North/South Street	Lower Miller Creek									
Time Analyzed	AM Projected School Hour	Peak Hour Factor	1.00									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	Riverfront Trails Residential Development											

					Majo	Street: Nor	th-South										
Vehicle Volumes and Adj	ustme	nts															
Approach	T	Eastbound				Westl	bound		Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		289	0	34		0	0	8		92	178	0		0	34	189	
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)			0			(0										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)			323				8			92				0			
Capacity, c (veh/h)			477				862			1340				1392			
v/c Ratio			0.68				0.01			0.07				0.00			
95% Queue Length, Q ₉₅ (veh)			5.0				0.0			0.2				0.0			
Control Delay (s/veh)			27.0				9.2			7.9				7.6			
Level of Service (LOS)			D				А			А				А			
Approach Delay (s/veh)		27	7.0			9	.2			3	.1		0.0				
Approach LOS			D			,	A										

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	RLA	Intersection	Lower Miller & Bigfork									
Agency/Co.	ATS	Jurisdiction	City of Missoula									
Date Performed	4/20/2021	East/West Street	Bigfork									
Analysis Year	2025	North/South Street	Lower Miller Creek									
Time Analyzed	Project PM School Hour	Peak Hour Factor	1.00									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	Riverfront Trails Residential Development											

					Majo	r Street: Nor	th-South										
Vehicle Volumes and Adj	ustme	nts															
Approach		Eastb	ound			Westl	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		117	8	34		4	0	0		21	114	4		13	87	84	
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)			0			(0										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)			159				4			21				13			
Capacity, c (veh/h)			668				577			1400				1464			
v/c Ratio			0.24				0.01			0.01				0.01			
95% Queue Length, Q ₉₅ (veh)			0.9				0.0			0.0				0.0			
Control Delay (s/veh)			12.1				11.3			7.6				7.5			
Level of Service (LOS)			В				В			А				А			
Approach Delay (s/veh)		12	2.1			1	1.3			1	.3			0	.6		
Approach LOS			В				В										

Generated: 7/20/2022 10:06:48 AM

		HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	y					
								1							L I	
General Inform	nation	1							Intersect		_		ta n'			
Agency		ATS			1			Duration,		0.250			F_			
Analyst		RLA		+		Apr 2		_	Area Typ	e	Other				->-	
Jurisdiction				Time F			eak Hou	_	PHF		1.00		4 →	w ∓ E 8	<u>←</u> ÷	
Urban Street		Brooks		-	sis Yea				Analysis	Period	1> 7:0	00	☆		ቱ -	
Intersection		Brooks & Miller Cre	ek	File N	ame	Brook	sAMupo	date.xı	ıs					47		
Project Descript	tion	Riverfront Trails	_	_	_			_			_	_	*	4 1 4 7	<u>ት</u>	
Demand Inforn	nation				EB		Т	WE	3	T	NB		T	SB		
Approach Move				1	Т	R	L	T	R		Т	R	L	Т	R	
Demand (v), v				147	1610		278	520		79	133	867	4	64	42	
Bomana (1), 1	011,11				1010		2.0	02			100	001		U.	12	
Signal Informa	tion				2	5	╛. :		. ZV.			_			\mathbf{L}	
Cycle, s	140.0	Reference Phase	2			\square	S# •	-	54	2		\rightarrow	렺؞∷) (stz	
Offset, s	0	Reference Point	End	Green	60	3.0	64.0	0.9	50.1	0.0			M -		4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.0	4.0		0.0		>	\rightarrow		KÎZ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0		0.0		5	- 6	7	8	
									1445-		. 1					
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBI	-	SBT	
Assigned Phase	€			5	_	2	1	_	6	3	_	8	7	_	4	
Case Number				1.1		4.0	1.1		4.0	0.0	_	13.0	1.1		3.0	
Phase Duration				10.0		68.0	13.0	_	71.0	0.0	_	54.1	4.9		59.0	
Change Period,		<u>, </u>		4.0		4.0	4.0	_	4.0	4.0	_	4.0	4.0	_	4.0	
Max Allow Head				3.3		0.0		3.0 0.0		0.0		3.4	3.0		3.4	
Queue Clearan	ce Time	e (g s), s		8.0			11.0					52.1	2.2		5.0	
Green Extensio		(g e), s		0.0		0.0	0.0	0.0		0.0	_	0.0	0.0		3.7	
Phase Call Prob	oability			1.00)		1.00)				1.00	0.14	L	1.00	
Max Out Probal	bility			1.00			1.00					1.00)	0.00	
Movement Gro	up Res	sults			EB			WB			NB			SB		
Approach Move				L	Т	R	L	Т	R	L	Т	R		Т	R	
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow F) veh/h		147	854	847	278	265	263		212	867	4	64	42	
		ow Rate (<i>s</i>), veh/h/l	n	1810	1900	1864	1810	1900	_		128	1610	1810	1900	1610	
Queue Service		· · ·		6.0	62.1	63.3	9.0	11.8			6.0	50.1	0.2	3.0	2.1	
Cycle Queue Cl		- ,		6.0	62.1	63.3	9.0	11.8	11.8		50.1	50.1	0.2	3.0	2.1	
Green Ratio (g		σ τιπο (g ε), σ		0.50	0.46	0.46	0.53	0.48	_		0.36	0.42	0.38	0.39	0.44	
Capacity (c), v				467	868	852	169	909	904		81	681	63	746	702	
Volume-to-Capa		atio (X)		0.315		-	1.641	0.291			2.609	1.274	0.064	0.086	0.060	
		/In(50 th percentile))	67.4		890.9	516.8	133.5			500.3	1218.	2.1	33.3	19.8	
Back of Queue	(🔾), 10	mir (oo ur percentile,	,	07.4	0,0.0	000.0	010.0	100.0	100.2		000.0	9	2.1	00.0	15.0	
Back of Queue	(Q), ve	eh/In (50 th percent	ile)	2.7	35.1	35.6	20.7	5.3	5.3		20.0	48.8	0.1	1.3	0.8	
Queue Storage	Ratio (RQ) (50 th percent	tile)	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
Uniform Delay (, ,			19.7	37.5	37.8	43.6	22.1	22.1		42.6	40.4	36.8	26.7	22.9	
Incremental Delay (d 2), s/veh			0.1	26.9	29.5	313.4	0.8	0.8		758.4	134.6	0.2	0.0	0.0		
Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh				19.9	64.4	67.4	357.0	22.9	23.0		801.0	175.0	37.0	26.7	22.9	
Level of Service (LOS)				В	E	E	F	С	С		F	F	D	С	С	
Approach Delay	, s/veh	/LOS		62.2	2	E	138.	2	F	298.	0	F	25.6	3	С	
Intersection Del	ay, s/ve	eh / LOS				14	3.3						F			
88141								\A/D			ND			SB		
Multimodal Re		// 00		4.00	EB		0.44	WB		0.00	NB	В	2 2 2 2		В	
Pedestrian LOS				1.92		В	2.11	_	В	2.29	-	В	2.29	-	В	
Bicycle LOS Sc	ore / LC	J3		2.01		В	1.15)	Α	2.27		В	0.67		Α	

	HCS7 Signalized Intersection Results Summary															
General Inform	ation							1	ntersect	ion Infe	ormatic	.		ا با علما يلم إنه	þ. l.	
	iation	ATS						_			0.250	- 1	ŢŢĻ			
3 3				A l	ia Data	Δ = = 20	2004		Duration,				K.			
				<u> </u>		Apr 20			Area Typ	e	Other			N w1=		
Jurisdiction				Time F	erioa	Projec	ted PM Hour		PHF		1.00		-{-{	"T"		
Urban Street		Brooks		Analys	is Year	2025		A	Analysis	Period	1> 7:0	00		4 7	k.	
Intersection		Brooks & Miller Cre	ek	File Na	ame	Brook	sPMupo	date.xu	s				15	4 1 4 7	7	
Project Descript	tion	Riverfront Trails														
Demand Inforn	nation				EB			WB	.		NB		SB			
Approach Move				L	T	T R	L	T	R	L	T	R	L	T	R	
Demand (v), v				449	1438		101	918		98	282		168	101	247	
Bomana (v), v	OHIJH			110	1100	01	101	010	101		202	100	100	101	211	
Signal Informa	tion						1_									
Cycle, s	140.0	Reference Phase	2	1	P 6	\blacksquare			M2		K		$\Leftrightarrow \bot$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	
Offset, s	0	Reference Point	End	Green	7.0	19.3	27.1	9.9	55.7	0.0		1	2	3	4	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	4.0	4.0	0.0		>	\rightarrow	\	KÎZ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	0.0	0.0	0.0	0.0		5	6	7	8	
				1												
Timer Results				EBL	-	EBT	WB	L	WBT	NBL	-	NBT	SBI	-	SBT	
Assigned Phase	e			5		2	1	_	6	3	_	8	7	-	4	
Case Number				1.1		4.0	1.1		4.0	0.0		13.0	1.1		3.0	
Phase Duration	·			35.3	3	54.4	11.9		31.1	0.0		59.7	13.9		73.6	
Change Period,	•			4.0		4.0	4.0		4.0	4.0		4.0	4.0 3.0		4.0	
Max Allow Head		, ·		3.3		0.0	3.0		0.0	0.0		3.3			3.3	
Queue Clearan				31.8	3		8.0	_				55.7			15.1	
Green Extensio		(g e), s		1.0		0.0	0.2		0.0	0.0		2.0	0.2		2.0	
Phase Call Prob	pability			1.00			0.98					1.00	1.00			
Max Out Probal	bility			0.00		_	0.00	0.00				0.00	0.00		0.00	
Movement Gro	up Res	sults			EB			WB			NB			SB		
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow F	Rate (v), veh/h		449	740	735	101	566	486		380	188	168	101	247	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n	1810	1900	1883	1810	1900	1629		177	1610	1810	1900	1610	
Queue Service	Time (g	g s), S		29.8	52.3	52.3	6.0	30.4	30.4		6.0	11.4	7.6	4.1	13.1	
Cycle Queue Cl	learance	e Time (<i>g c</i>), s		29.8	52.3	52.3	6.0	30.4	30.4		53.7	11.4	7.6	4.1	13.1	
Green Ratio (g	/C)			0.45	0.36	0.36	0.27	0.19	0.19		0.40	0.40	0.47	0.50	0.50	
Capacity (c), v	eh/h			446	710	704	159	413	354		100	618	217	920	780	
Volume-to-Capa	acity Ra	tio (X)		1.008	1.042	1.044	0.635	1.372	1.372		3.789	0.304	0.773	0.110	0.317	
Back of Queue	(Q), ft/	In (50 th percentile)		460.3	837.8	834.7	67.7	876.3	757.3		941	113.8	82.1	44.2	120.7	
Back of Queue	(Q), ve	eh/In (50 th percenti	le)	18.4	33.5	33.4	2.7	35.1	30.3		37.6	4.6	3.3	1.8	4.8	
Queue Storage	Ratio (RQ) (50 th percent	ile)	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
Uniform Delay ((d 1), s	/veh		42.5	43.8	43.8	42.4	54.8	54.8		36.5	30.1	32.3	19.7	22.0	
Incremental Del	lay (<i>d</i> 2), s/veh		21.4	45.2	46.1	1.6	182.1	184.5		1267. 0	0.1	2.2	0.0	0.1	
Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		
Control Delay (d), s/veh			63.9	89.0	89.9	43.9	236.9	239.3		1303. 5	30.2	34.5	19.7	22.1		
Level of Service (LOS)				F	F	F	D	F	F		F C		С	В	С	
Approach Delay				83.5	5	F	221.	0	F	882.	1	F	25.7	7	С	
Intersection Del	lay, s/ve	h / LOS				22	3.4						F			
Multimodal Re					EB			WB		NB				SB		
Pedestrian LOS				1.93		В	2.14	_	В	2.29		В	2.27		В	
Bicycle LOS Sc	ore / LC	OS CONTRACTOR OF THE PROPERTY		2.07		В	1.44	1	Α	1.42		Α	1.34		Α	