Report of Geotechnical Investigation Trinity Apartments: Site 1 (Mullan Road) Missoula, Montana

Tetra Tech Project No. 117-8751001 July 2, 2020

PRESENTED TO

Trinity Apartments, LLLP Attn: Ms. Ashley Grant 1535 Liberty Lane, Suite 116A Missoula, MT 59808

PRESENTED BY

Tetra Tech 2525 Palmer Street, Suite 2 Missoula MT 59808 P +1-406-543-3045 F +1-406-543-3088 tetratech.com

Prepared by:

Andrew Warren, P.E. Geotechnical Engineer

Reviewed by:

Jeremy Dierking, P.E. Senior Geotechnical Engineer

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY
2.0 PURPOSE AND SCOPE OF STUDY
3.0 PROPOSED CONSTRUCTION
4.0 FIELD EXPLORATION
5.0 INFILTRATION TESTING
6.0 LABORATORY TESTING
7.0 SITE CONDITIONS
7.1 Seismic Design Parameters
8.0 SUBSURFACE CONDITIONS
8.1 Pavement Section
8.2 Fill
8.3 Silt
8.4 Clay
8.5 Sand
8.6 Gravel
8.7 Groundwater
9.0 ENGINEERING ANALYSIS AND RECOMMENDATIONS
9.1 Site Grading
9.2 Foundations
9.2.1 Spread Footings
9.2.2 Floor Slabs
9.2.3 Exterior Concrete Flatwork
9.3 Pavements
10.0 CONTINUING SERVICES
11.0 LIMITATIONS

APPENDICES

- Appendix A: Miscellaneous Figures and Details
 - Important Information About Your Geotechnical Engineering Report (Published by ASFE/GBA)
 - o Tetra Tech Boring Log Descriptive Terminology Key to Soil Symbols and Terms
 - o Classification of Soils for Engineering Purposes
 - Montana Guideline for Construction and Materials Requirements for Pavement Sections
 - Drawing No. 1001-1 Locations of Exploratory Borings
 - o Drawing No. 1001-2 Preliminary Site Layout (Provided by Intrinsik Architecture)
- Appendix B: Logs of Exploratory Borings
 - Figures 1 through 19
- Appendix C: Laboratory Testing
 - Figures 20 through 26
- Appendix D: Infiltration Testing Results

1.0 EXECUTIVE SUMMARY

The proposed Trinity Apartments project in Missoula, Montana is an affordable housing project which includes the construction of apartment complexes at two separate sites. The first site (Mullan Road) is located at 2440 Mullan Road, adjacent to the east side of the Missoula County Detention Center. The second site (Cooley Street) encompasses the 1600 block of Cooley Street. This report addresses the Mullan Road site.

Proposed construction at the Mullan Road site will consist of two four-story slab-on-grade buildings containing approximately 130 apartments in total. The larger of the two apartment buildings will be situated on the north side of the development, while the smaller building will be constructed to the south near Mullan Road. There will also be an approximate 8,000 square foot, 1½-story slab-on-grade Navigation Center designated as commercial space connecting the two apartment buildings on the north and east sides. New at grade paved parking and driving lanes will also be constructed, and will connect with West Broadway, Maple Street, and Mullan Road.

Much of the proposed site is covered by grasses or weeds and a thin layer of topsoil. The southern edge of the site is surfaced by concrete sidewalk or asphalt pavement, however. Beneath the topsoil horizon or pavement section, the soil profile encountered in the borings generally consists of varying thicknesses of fine-grained silty or clayey deposits, which extended to depths of 9 feet or less. Below the fine-grained soil, or in some cases beneath the topsoil, discontinuous seams of sand were encountered. The sand extended to depths of 2.8 to 8 feet, and beyond the maximum depth explored in borehole BH-2 (10.5 feet). Medium dense to very dense alluvial gravel was encountered below the silty, clayey, or sandy soils, and extended beyond the maximum depth explored in all of the boreholes in which it was encountered (maximum depth of 26 feet). Undocumented fill was encountered to a depth of approximately 5.5 feet in borehole BH-10, and to a depth of approximately 1 foot in BH-15. Groundwater was encountered at depths of 17.0 to 18.3 feet in nine (9) of the exploratory borings (BH-7, BH-8, BH-10 through BH-14, BH-16, and BH-18) at the time of the field exploration (May and June 2020).

Preliminary site grading plans were not provided at the time of report preparation, however, based on the current relatively flat site topography it is anticipated that site grading will be minimal to level the site for construction of the additions and provide positive drainage away from the new structures and surrounding finished grades. Pockets of existing fill within the new building footprints should be removed in its entirety. Any fine-grained silty or clayey deposits or sand seams encountered at the prospective foundation elevations must be removed in their entirety and replaced with properly compacted engineered gravel fill.

A conventional spread footing foundation bearing on the natural alluvial gravel or, where necessary a zone of compacted engineered gravel fill extending to the natural gravel, is recommended to support the anticipated structural loads. Column footings and strip footings placed on the natural gravel can be designed for an allowable bearing pressure of 5,000 pounds per square foot (psf). Imported fill must meet the gradation requirements specified herein. The on-site gravel is suitable for use as backfill along foundation walls, fill under the pavement section, as over-lot fill for site grading, and as engineered fill provided any deleterious materials or debris are removed. The gravel must be placed under controlled moisture and density conditions in accordance with requirements provided in the Site Grading section below. Based on the drilling information, some oversize cobbles and boulders should be anticipated, which is common to the alluvial gravel in the Missoula Valley. These oversize materials must be removed prior to placement as compacted structural or engineered gravel fill.

This executive summary has been prepared solely to provide a general overview and should not be relied upon for any purpose except for that for which it was prepared. The full geotechnical report must be referenced for information about findings, recommendations and other concerns.

2.0 PURPOSE AND SCOPE OF STUDY

Tetra Tech conducted a field exploration program consisting of drilling nineteen (19) exploratory borings to obtain information on subsurface soil conditions for Site 1 (Mullan Road) of the proposed Trinity Apartments project in Missoula, Montana. The geotechnical study was performed in accordance with Tetra Tech's proposal and scope of work dated May 13, 2020, and Work Authorization from Trinity Apartments, LLLP dated May 14, 2020.

Results of the field investigation and laboratory tests were analyzed to characterize site material properties. This report summarizes the field data and presents conclusions and recommendations for design and construction of the proposed building foundations, pavement sections and planned site grading based on the proposed construction and subsurface conditions encountered. The report also includes design parameters and a discussion of geotechnical engineering considerations related to construction.

3.0 PROPOSED CONSTRUCTION

Proposed construction at the Mullan Road site will consist of two four-story slab-on-grade buildings containing approximately 130 apartments in total. At the time of the field investigation, two potential layouts were being considered for the development. Since that time, a final layout has been chosen, and is shown on Drawing 1001-2 in Appendix A. The larger of the two apartment buildings will be situated on the north side of the development, while the smaller building will be constructed to the south near Mullan Road. There will also be an approximate 8,000 square foot, 1½-story slab-on-grade Navigation Center designated as commercial space. The Navigation Center will connect the two apartment buildings on the north and east sides. Originally, below grade parking was to be included as part of the four-story structure, however, that has been eliminated as all parking needs will be accommodated by at grade parking around the perimeter of the buildings. The parking and driving lanes surrounding the buildings will also connect with West Broadway, Maple Street, and Mullan Road. Preliminary structural loads were not available at the time of report preparation.

Existing topography across the site is relatively flat, with a maximum elevation difference on the order of 3 feet. Preliminary site grading plans were not provided at the time of report preparation, but grading is anticipated to consist of minimal cuts and fills of less than 2 to 3 feet to level the site for construction of the proposed structures and provide drainage away from the new structure foundations.

If the above proposed construction and site grading will be significantly different from that described, Tetra Tech should be notified to re-evaluate the geotechnical recommendations and perform additional analysis as required.

4.0 FIELD EXPLORATION

The subsurface field exploration was conducted on May 28th through June 2nd, 2020, consisting of nineteen (19) boreholes spaced throughout the proposed site at the locations shown on Drawing No. 1001-1 (Locations of Exploratory Borings) in Appendix A to explore subsurface conditions. At the time of drilling, two potential layouts were being considered for the apartment complex, and both layouts were investigated during the field exploration. The two potential layouts were provided by Trinity Apartments, LLLP, and locations of the exploration borings were determined and staked in the field by Tetra Tech. Prior to

mobilization, Tetra Tech contacted Montana One Call to request the location and clearance of public underground utilities before performing drilling.

Tetra Tech's drilling subcontractor (O'Keefe Drilling) advanced the borings with a truck-mounted Mobile B-61 drill rig equipped with 8-inch outside diameter, continuous flight, hollow stem augers. Tetra Tech's field engineer provided technical oversight during the field investigation, logged the borings, and handled samples. The borings were reclaimed by backfilling with auger cuttings and capped with asphalt patch where borings extended through existing pavement.

Samples of the subsurface materials were obtained with 2-inch outside diameter split-spoon samplers. Split-spoon samplers were driven into the various strata using a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each of three successive 6-inch increments was recorded. When using the split-spoon sampler, the total number of blows required to advance the sampler the second and third 6-inch increments is the penetration resistance (N value), as described by ASTM International (ASTM) Method D1586. Penetration resistance values generally indicate the relative density or consistency of the subsurface soils. Bulk samples of soil were obtained from the hollow-stem auger cuttings at select locations. Relatively undisturbed subsurface samples were obtained by hydraulically pushing a 3-inch I.D. thin walled Shelby Tube sampler.

Boring logs were prepared noting the borehole location, equipment and drill methods used, subsurface profile and descriptions per ASTM D2487, and groundwater conditions. Boring depths are referenced to the existing ground surface elevation. Depths at which the samples were obtained along with the penetration resistance values are shown on the logs of exploratory borings, presented in Appendix B (Figures 1 through 19).

5.0 INFILTRATION TESTING

Four (4) infiltration tests were conducted on June 4, 2020 within the footprint of the proposed development at the Mullan Road site at the locations of boreholes BH-5, BH-9, BH-15, and BH-17 (see Drawing 1001-1, Appendix A). The infiltration tests were performed following the procedures outlined in Appendix C of the Montana DEQ Circular 8, with the exception of casing diameter. Open-ended 3-inch diameter PVC pipe was installed in the previously mentioned boreholes to depths of approximately 9 feet below existing grade following completion of drilling. The percolation tests were performed through the open-ended pipe within the subsurface materials encountered in each respective borehole. Results of the infiltration testing are presented in Appendix D.

6.0 LABORATORY TESTING

Samples obtained during the field exploration were taken to Tetra Tech's laboratory, where they were observed and visually classified in accordance with ASTM D2488, which is based on the Unified Soil Classification System. Representative samples were selected for testing to determine the physical properties of the soils in general accordance with ASTM or other approved procedures. The following list describes laboratory testing performed for this investigation, and their purpose:

Tests Conducted:	To Determine:
Natural Moisture Content	Moisture content representative of field conditions at the time samples were collected.
Grain-size Distribution	Size and distribution of soil particles (i.e., clay, silt, sand, and gravel).
Atterberg Limits	The effect of varying water content on the consistency of fine-grained soils.
Moisture-Density Relationship	The optimum moisture content for compacting soil and the maximum dry unit weight (density) for a given compactive effort.
California Bearing Ratio	The capacity of a subgrade or subbase to support a pavement section designed to carry a specific traffic load.
Water Soluble Sulfate Content	Potential of soils to deteriorate normal strength concrete.
Resistivity and pH	The combination of these characteristics determines the potential of soil to corrode metal.

Field and laboratory test results are presented on Figures 20 through 26 in Appendix C. This data, along with the field information, were used to prepare the exploration boring logs on Figures 1 through 19 in Appendix B.

7.0 SITE CONDITIONS

The proposed Trinity Apartments project at the Mullan Road site is located at 2440 Mullan Road. The site is currently vacant, with no apparent history of previous development on the site. The site is approximately 5.2 acres in total, and is bordered to the north by Rangitsch Brothers RV & Manufactured Home Center and to the east by Dollar Car Rental and West Broadway Street. South of the property is Mullan Road and existing parking and an access drive for the Missoula County Detention Center, and to the west is the Missoula County Detention Center campus.

The proposed site is currently vegetated with native grasses and weeds throughout much of the property, with the southern edge of the development site containing several trees and landscaped grasses near the existing sidewalk and asphalt parking. Current topography across the property is relatively flat, with a maximum elevation difference on the order of 3 to 4 feet across the site. There are, however, several mounds of probable fill on the order of 4 to 5 feet tall placed at the northwest corner of the site.

7.1 SEISMIC DESIGN PARAMETERS

National Seismic Hazard Maps prepared by the USGS depict probabilistic strong ground motions and spectral accelerations with 10, 5, and 2 percent probabilities of exceedance in any 50-year period for the conterminous United States. International Building Code (IBC) 2015 design criteria are based on a 2 percent probability of exceedance, or in other words, a 98 percent probability of not being exceeded in a 50-year period. Based on the Applied Technology Council (ATC) Hazards by Location application which queries applicable data from USGS, the site modified peak ground acceleration at the project site in Missoula, Montana having a 2 percent probability of exceedance in any 50-year period is estimated to be 0.232g.

The USGS database presents spectral response acceleration data in bedrock for short (0.2 second) periods (S_s) and for long (1 second) periods (S_1) for similar probability and 50-year return periods. According to IBC 2018 design procedures, these acceleration data are then adjusted upward or amplified depending on soil classification to reflect magnification effects as the earthquake wave energies pass from bedrock into soil. The values are then reduced by a factor that accounts for partial damping of the wave energy by the structure. The final values obtained (known as S_{DS} and S_{D1}) become the basis for the structural design and in this case, at the project site, are estimated as 0.385g (S_{DS}) and 0.160g (S_{D1}). The data is summarized in the table below.

The methods of IBC 2018 require that the properties of the soil at the proposed building site be classified as one of several site classes. The seismic design parameters for this site include a seismic zone soil profile type of (C), in accordance with the above referenced standard. Site Class C corresponds to a very dense soil profile with average undrained shear strengths greater than 2,000 pounds per square foot (psf) and standard penetration resistance values averaging greater than 50 blows per foot in the upper 100 feet. This classification is based on the laboratory test data, exploratory boring information, and knowledge of the local geology.

Latitude (North)	Longitude (West)	PGA	S₅	S ₁	Site Class	Fpga	Fa	Fv	PGA _M	SDS	S _{D1}
46.88226085	-114.0246672	0.193	0.481	0.145	С	1.2	1.2	1.655	0.232	0.385	0.160

Earthquake and Site-Specific Seismic Design Parameters

Notes: **PGA** = Peak Ground Acceleration $S_1 = 1.0$ sec. Spectral Acceleration Coefficient $F_v = 1.0$ sec. Spectral Acceleration Site Coefficient $A_s =$ Acceleration Coefficient Time period = 50 years

 $\begin{array}{l} \textbf{S}_{s} = 0.2 \; \text{sec. Spectral Acceleration Coefficient} \\ \textbf{F}_{a} = 0.2 \; \text{sec. Spectral Acceleration Site Coefficient} \\ \textbf{F}_{PGA} = \text{Peak Ground Acceleration Site Coefficient} \\ \text{Return period} = 2\% \end{array}$

8.0 SUBSURFACE CONDITIONS

Much of the proposed site is covered by grasses or weeds and a thin layer of topsoil. The southern edge of the site is surfaced by concrete sidewalk or asphalt pavement, however. Beneath the topsoil horizon or pavement section, the soil profile encountered in the borings generally consists of varying thicknesses of fine-grained silty or clayey deposits, which extended to depths of 9 feet or less. Below the fine-grained soil, or in some cases beneath the topsoil, discontinuous seams of sand were encountered. The sand extended to depths of 2.8 to 8 feet, and beyond the maximum depth explored in borehole BH-2 (10.5 feet). Medium dense to very dense alluvial gravel was encountered below the silty, clayey, or sandy soils, and extended beyond the maximum depth explored in all of the boreholes in which it was encountered (maximum depth of 26 feet). Undocumented fill was encountered to a depth of approximately 5.5 feet in borehole BH-10, and to a depth of approximately 1 foot in BH-15.

The boring logs should be referenced for complete descriptions of the soil types and their estimated depths. A characterization of the subsurface profile includes grouping soils with similar physical and engineering properties into a number of distinct layers. The representative subsurface layers at the site are presented below, starting at the ground surface.

8.1 PAVEMENT SECTION

Borehole BH-19 was drilled through the existing pavement located at the southern edge of the property. The pavement section encountered consisted of 3 inches of asphalt covering 1.4 feet of base course

material. The base course visually classified as poorly graded gravel with sand and sand according to ASTM D2488.

8.2 FILL

A layer of uncontrolled fill was encountered in boreholes BH-10 and BH-15 below a thin layer of topsoil. The fill extended to a depth of approximately 5.5 feet below existing grade in BH-10, and visually classified as clayey sand according to ASTM D2488. In BH-10, asphalt pieces were encountered within the fill material near a depth of approximately 3 feet. The fill encountered in BH-15 visually classified as poorly graded gravel with sand and extended to an approximate depth of 1 foot. Standard Penetration Test (SPT) blow counts (N Values) recorded in the fill ranged from 11 to 41 blows per foot, indicating a medium dense to dense relative density. The natural moisture content of tested split spoon samples ranged from 4 to 6 percent at the time of drilling.

8.3 SILT

Silt was encountered below a thin layer of topsoil in boreholes BH-1 through BH-4, extending to depths of 4 to 9 feet. The silt visually classified as silt with sand according to ASTM D2488, and contained occasional gravel throughout. SPT N values recorded in the silt ranged from 8 to 46 blows per foot, indicating a medium stiff to hard soil stratum. The natural moisture content of tested split spoon samples ranged from 4 to 9 percent at the time of drilling.

8.4 CLAY

Below a thin layer of topsoil or fill, clay was encountered in 10 of the borings (BH-5, BH-7, BH-8, BH-11, BH-12, and BH-14 through BH-18). N Values recorded in the clay varied from 3 to 40, indicative of a soft to hard stratum. The clay was determined to have a visual classification of sandy, silty clay, and extended to depths of 1.2 to 5.3 feet below existing grade. Gradation analysis performed on a representative bulk sample of the clay from BH-5 (0.5 - 4.0 feet) determined a classification of sandy, silty clay, confirming its respective visual classification (Figure 21, Appendix B). Fines content (percent passing No. 200 sieve) of the tested sample was 54 percent, and Atterberg limit testing determined a liquid limit of 23 percent and plasticity index of 7. Natural moisture content of tested split spoon samples of the clay ranged from 6 to 23 percent at the time of drilling.

Results of moisture-density relationship testing (Proctor) performed on a disturbed bulk sample of the clay from borehole BH-5 (0.5 - 4.0 feet) indicate a maximum dry density of 118.2 pounds per cubic foot (pcf) at an optimum moisture content of 11.3 percent (Figure 24, Appendix B). A California Bearing Ratio (CBR) test performed on the same bulk sample of the clay indicates a CBR value on the order of 6 percent (Figure 26, Appendix B).

Analytical chemical testing performed on the clay material resulted in a pH value of 8.05 with a minimum resistivity value of 3,300 ohm-cm. This combination of pH and resistivity suggests the potential of corrosion of buried metal in this material is mild to moderate. An approved bituminous or polymeric coating, or cathodic protection should be considered for all galvanized steel with the potential to be exposed to these materials. Use of bituminous or polymeric coating for buried galvanized steel posts or other steel structures is not required in circumstances where steel elements are in connection with a cathodic protection grid.

Testing of water-soluble sulfates is currently being performed and the results will be forwarded upon completion.

8.5 SAND

Below the topsoil horizon or fine-grained silt or clay deposits in boreholes BH-2, BH-3, BH-4, BH-6, BH-9, BH-11, BH-13, discontinuous seams of sand were encountered. SPT N values recorded in the sand strata ranged from 6 to 39 blows per foot, indicating a loose to dense relative density. The sand was heterogeneous in nature, containing varying percentages of silt and clay. Visual classifications of the material according to ASTM D2488 in the various boreholes included: poorly graded sand with silt, silty sand, silty, clayey sand, and clayey sand. In addition to the varying characteristics of the sand, depth ranges at which it was encountered also widely varied. The sand was encountered from depths ranging from just below the topsoil horizon to 7 feet, and generally extended to depths of 2.8 to 8 feet, and beyond the maximum depth explored in BH-2 (10.5 feet).

The natural moisture content of tested split spoon samples of the sand ranged from 3 to 8 percent at the time of drilling. Gradation analysis performed on a relatively undisturbed sample of the sand from borehole BH-4 from a depth of 7 to 8 feet determined a soil classification of silty sand (Figure 20, Appendix B). The analysis determined the material had a fines content of approximately 37 percent. Atterberg limit testing performed on the material indicates the soil is non-plastic.

8.6 GRAVEL

Natural alluvial gravel was encountered in all the boreholes with the exception of BH-2. Depths at which the gravel was encountered varied from 1.2 to 9 feet below existing grade, and extended beyond the maximum depths explored (maximum depth of 26 feet). The gravel was generally encountered at shallower depths progressing to the south, with several exceptions. SPT N values recorded in the gravel ranged from 18 to greater than 50 blows per foot, indicating a medium dense to very dense relative density. The moisture content of tested split spoon samples varied from approximately 1 to 6 percent at the time of drilling.

Visual classification of the alluvial gravel according to ASTM D2488 varied across the site, with classifications of poorly graded gravel with silt and sand, poorly graded gravel with sand, and poorly graded gravel with clay and sand determined in the various boreholes. Gradation analysis performed on disturbed bulk samples collected from material recovered at the surface from auger cuttings from borehole BH-6 (5 – 10 feet) and BH-8 (10 – 15 feet) classified as well graded gravel with silt and sand and poorly graded gravel, respectively (Figures 22 and 23, Appendix B). Fines contents in the tested samples varied from 1 to 12 percent. Atterberg limit testing performed on the sample from BH-6 determined the fine-grained portion of the material was non-plastic, while similar testing performed on the sample from BH-8 determined the fine-grained portion of the material had a liquid limit of 22 percent and plasticity index of 5.

Results of moisture-density relationship testing (Proctor) performed on the disturbed bulk sample of the gravel from borehole BH-6 (5 - 10 feet) indicate a rock corrected maximum dry density of 140.4 pounds per cubic foot (pcf) at a rock corrected optimum moisture content of 5.0 percent (Figure 25, Appendix B).

8.7 GROUNDWATER

Groundwater was encountered at depths of 17.0 to 18.3 feet in nine (9) of the exploratory borings (BH-7, BH-8, BH-10 through BH-14, BH-16, and BH-18) at the time of the field exploration (May and June 2020). The borings were backfilled immediately after drilling. Typically, groundwater elevations fluctuate with seasonal precipitation and local irrigation practices. Numerous factors contribute to groundwater fluctuations, and evaluation of such factors is beyond the scope of this report.

9.0 ENGINEERING ANALYSIS AND RECOMMENDATIONS

9.1 SITE GRADING

The proposed Trinity Apartment complex at the Mullan Road site will be comprised of two four-story slabon-grade apartment buildings, a 1½-story slab-on-grade Navigation Center, and a parking area and driving lane surrounding the new development. Preliminary site grading plans were not provided at the time of report preparation, however, based on the current relatively flat site topography it is anticipated that site grading will be minimal to level the site for construction of the additions and provide positive drainage away from the new structures and surrounding finished grades. All existing fill within the new building or pavement area footprints should be removed in its entirety. Foundation excavations will generally extend through fine-grained silt and clay, sand seams, or alluvial gravel soils. Any sand, silt, or clay seams encountered at the prospective footing elevations must be removed in their entirety and replaced with properly compacted engineered gravel fill. Excavation of the soil to the proposed depths can be accomplished with conventional heavy-duty earth excavating equipment. Occasional cobbles should be anticipated during excavation by the contractor.

The on-site natural gravel soils are suitable for use as backfill along foundation walls, structural or engineered gravel fill below foundations and floor slabs, and as over-lot fill, provided oversize cobbles greater than 3-inch size and any deleterious material is removed and it is placed under controlled moisture and density conditions. Imported gravel can also be used as structural and engineered gravel fill to raise site grades or foundation backfill when placed in uniform lifts under controlled moisture and density conditions. The recommendations contained in this report assume that structural and engineered gravel fill will be placed according to the specifications presented herein. On-site silty, clayey, or sandy soils should not be used as backfill beneath structure footprints or along foundation walls, but may be used for over-lot fill or beneath pavements, provided any organics or deleterious material is removed and the material is placed under controlled moisture and density conditions. If site grading significantly differs from what is described herein, the recommendations of this report must be reviewed and revised as necessary to reflect the final grading plan.

Depending on the season and precipitation patterns, based on the information obtained at the time of drilling, the natural moisture content in the excavated material may be higher or lower than the optimum moisture content. Moisture conditioning will be required to adjust the natural moisture content of the soils to within 2 percent of optimum moisture to achieve proper compaction. Unless the soils are processed to adjust the moisture content, it will be difficult to achieve compaction when placed as fill.

In addition, depending on the time of construction, natural moisture conditions and precipitation will influence the mobility of construction equipment. The use of low ground pressure, track-mounted excavation equipment should be anticipated by the contractor since tracks will exert lower ground pressures than pneumatic tires. In fine-grained subgrade soils such as those encountered near surface at this project, pneumatic-tired equipment will rut the subgrade and reduce its shear strength.

Freezing temperatures have the potential to impact construction. Prolonged periods of cold weather in the months of December through February may be difficult for construction since it is difficult to properly install concrete in subfreezing temperatures. Fill should not be placed during freezing temperatures, especially during winter months unless construction practices are altered to adjust to these conditions. Under no circumstances should foundations be constructed on frozen materials.

Site grading plans must include drainage features to rapidly drain surface run-off away from the site. All grades must provide effective drainage away from the facility structures during and after construction. Water permitted to pond next to structures can result in greater soil movements than those discussed in

this report. These greater movements can result in unacceptable differential movements and piping connection problems. Estimated movements described in this report are based on effective drainage for the life of each structure and cannot be relied upon if effective drainage is not maintained.

Careful attention should be given to weather conditions during preparation of the subgrade to prevent excess moisture from collecting on or penetrating and possibly saturating the subgrade before and after compaction. The subgrade should be temporarily sloped to provide drainage into a low area of the excavation and excess water should be pumped from the excavation into a nearby drainage sump. In the event that areas of subgrade become excessively saturated, the wet area should be excavated, replaced with moisture conditioned soil, and compacted. Such collection and discharge must be in compliance with the Contractor's site-specific storm water pollution prevention plan (SWPPP).

Design and construction criteria presented below should be observed for site preparation purposes and when preparing project documents for construction. Construction details should be considered when preparing project documents.

- 1. All existing asphalt, concrete, existing fill, topsoil, organic material, and any other deleterious material should be removed from the proposed construction areas in their entirety, and the subsequent excavations backfilled in accordance with the recommendations below. Following stripping, topsoil can be reused for general landscaping and site grading purposes outside the limits of the construction areas.
- 2. Prior to placing new site grading fill, the stripped subgrade should be moisture conditioned, compacted, and proof-rolled with large compaction equipment. If loose or soft areas are encountered during the proof-rolling, the soft or loose soil should be over-excavated, replaced, and compacted in accordance with the specification in Item 3 below.
- 3. All fill and backfill should be approved by the geotechnical engineer, moisture-conditioned to within 2 percent of optimum moisture content and placed in uniform lifts of suitable thickness for the compaction equipment. It should then be compacted to the following minimum dry densities as determined by ASTM D698.

Location	ASTM D698 (%)
Below Foundations	98
Below Floor Slabs and Flatwork	98
Below Paved Areas	95
Foundation Wall Backfill	98
Utility Trench Backfill	95
All Other Fill	95

4. Imported granular material or on-site gravel used as structural or engineered gravel fill below foundations, floor slabs, pavements, or as backfill should meet the following grading requirements and be placed and compacted in accordance with Item 3 above.

Sieve and Screen Size	Percent Passing
3-Inch	90 – 100
No. 4	25 – 50
No. 40	10 – 20
No. 200	0 – 15

- 5. The on-site natural gravel soils are suitable for use as backfill along foundation walls, structural or engineered gravel fill below the foundation, and as over-lot fill, provided oversize cobble and boulders and any deleterious material greater than 3-inch size is removed and it is placed under controlled moisture and density conditions.
- 6. The on-site silty, clayey, and sandy soils are not suitable for use beneath structure footprints or along foundation walls, but may be used as general over-lot fill, provided any organics and deleterious material is removed and it is placed under controlled moisture and density conditions.
- 7. The contractor is responsible for providing safe working conditions in connection with underground excavations. Temporary construction excavations which workers will enter will be governed by OSHA guidelines 29 CFR 1926, Subpart P. For planning purposes, subsoils encountered in the exploratory borings classify as Type C.
- 8. Site grading must be developed and maintained during and after construction to rapidly drain surface and tank roof run-off well away from the site and all foundations.
- 9. To the greatest extent practical, do not allow lawn irrigation, or the placement of lawn irrigation system lines within 10 feet of the building. Downspouts from roof drains should be discharged at least 10 feet from the building. The ground surface adjacent to the exterior foundations should be sloped to drain away from the foundation in all directions. A minimum slope of at least 6 inches in the first 10 feet is recommended.

9.2 FOUNDATIONS

The proposed Mullan Road site for the Trinity Apartments project is underlain by varying depths of finegrained silty and clayey deposits and discontinuous sand seams or occasional pockets of uncontrolled fill covering medium dense to very dense natural alluvial gravels. Based on the depths at which these soils were encountered within the vicinity of the new building footprints (average depth of 3.5 feet, maximum depth of 8 feet), it is recommended that they be removed in their entirety down to the underlying natural gravel, and where necessary, replaced with compacted engineered gravel fill to footing elevations to provide a relatively uniform bearing platform for the new building foundations.

9.2.1 Spread Footings

Based on the subsurface conditions encountered within the exploration borings, conventional spread footings bearing on the natural alluvial gravel or compacted engineered gravel fill extending to the natural gravel are recommended to support the structural loads. In order to provide a uniform bearing condition beneath all footings, the subgrade at footing elevation should be proof rolled to identify any soft zones prior to placement of concrete formwork.

Calculations indicate continuous strip footings and column footings bearing on the natural gravel or, where necessary, compacted engineered gravel fill extending to the natural gravel, can be proportioned for an allowable bearing pressure of 5,000 psf. Settlement analysis using the previously described bearing pressures and theory of elasticity principles determined the total settlement for strip and column footings supported on the natural gravel or compacted engineered gravel fill is estimated to be approximately 1 inch or less, which is within the tolerable limit for the type of construction proposed. Differential settlement across the new building is estimated to be approximately one-half of the total settlement.

The lateral resistance of spread footings is controlled by a combination of sliding resistance between the footing and the foundation materials and passive earth pressure against the side of the footing. Criteria for calculating the lateral resistance are presented below.

The following design and construction criteria should be observed for a conventional spread footing foundation. Construction details should be considered when preparing project documents.

- 1. Interior and exterior footings should be supported on the natural medium dense to very dense alluvial gravel or, where necessary, a zone of compacted engineered gravel fill (conforming to the requirements of Item 4 in the *Site Grading* section) extending to the natural gravel, and designed for a maximum allowable bearing pressure of 5,000 psf for strip footings and column footings, provided settlements as outlined above are acceptable.
- 2. All loose or soft areas and silty, clayey, or sandy seams encountered at footing elevation should be removed in their entirety below footing elevation to intersect the underlying natural gravel. The resulting excavation should then be backfilled with engineered gravel fill, compacted in accordance with Item 3 in *Site Grading*. The zone of engineered gravel fill beneath footings should extend a minimum of 1 foot laterally beyond the outside edges of footings for each foot of depth of engineered gravel fill below the footings (minimum of 2 feet). This provides a uniform layer of competent gravel upon which to support structural footing loads.
- 3. Exterior footings or footings below unheated areas should be placed at least 42 inches below grade for frost protection.
- 4. The minimum width of column footings should be at least 24 inches and at least at least 16 inches for continuous spread footings, or in accordance with applicable building codes, whichever is more restrictive.
- 5. Footing lateral loads may be resisted by friction between the footing base and supporting soil, and lateral bearing pressure against the sides of footings. For design purposes, a friction coefficient of 0.52 for the natural gravel and 0.47 for engineered gravel fill should be used. A lateral bearing pressure of 550 psf per foot of depth for the natural gravel and 480 psf per foot of depth for engineered gravel fill is appropriate. These values include a safety factor of approximately 1.5.
- 6. Concrete in contact with the soil should be designed using Type I-II cement.
- 7. Tetra Tech's geotechnical engineer should observe all footing excavations prior to placement of concrete forms and a representative of the geotechnical engineer should test the placement of all fill and backfill.

9.2.2 Floor Slabs

Performance of slab-on-grade concrete construction is dependent upon a relatively uniform subgrade beneath the slab. Floor slabs should be supported on the natural gravel or a minimum of 12 inches of engineered gravel fill compacted in accordance with Item 3 in the *Site Grading* section. In areas where existing fill is encountered, it should be removed in its entirety and replaced with compacted engineered gravel fill. It is also customary to provide a gravel-leveling course beneath floor slabs. This is normally a construction convenience rather than a structural requirement, and acts as a capillary break. The following recommendations should be considered for concrete slab-on-grade construction.

- 1. Floor slabs should be supported on the natural gravel or a minimum of 12 inches of compacted engineered gravel fill. In preparation for construction of the floor slabs, the subgrade should be scarified to a depth of 6 inches and compacted in accordance with Item 3 in *Site Grading*.
- 2. A minimum 4-inch thick layer of free-draining gravel should be placed between the slabs and the natural gravel or structural gravel fill as a leveling course. This material should consist of minus 3/4-inch aggregate with less than 60 percent passing the No. 4 sieve and less than 10 passing the No. 200 sieve. This layer can be included as part of the engineered gravel fill layer.
- 3. To reduce the effects of differential movement, floor slabs should be separated from all bearing walls and columns with expansion joints, which allow unrestrained vertical movement. Floor slab control joints should be used to reduce damage due to shrinkage cracking. The requirements for slab reinforcement should be established by the designer based on experience and the intended slab use.
- 4. In addition, all electrical and/or mechanical lines which pass through the floor slab should also be provided with a positive bond break so that they can move independently from the floor slab.
- 5. Floor slabs should not be placed on frozen subgrade or frozen engineered gravel fill.
- 6. Concrete floor slabs supported on compacted gravel as described above should be designed using a modulus of subgrade reaction of 300 pounds per cubic inch (pci).

9.2.3 Exterior Concrete Flatwork

Natural soil and/or fill disturbed by construction activities should be moisture conditioned and compacted in accordance with Item 3 in the *Site Grading* section, then proof rolled to identify any localized loose or soft areas. Localized loose or soft areas should be over-excavated to a minimum depth of 12 inches and replaced with engineered gravel fill and compacted in accordance with Item 3 in the *Site Grading* section. A minimum of 6 inches of engineered gravel fill should be placed beneath flatwork, placed and compacted in accordance with Item 3 in the *Site Grading* section. Flatwork at door openings intended for egress or ingress into the buildings must be tied to the foundation or underlain by engineered gravel fill to reduce the magnitude of differential movement between the slab and structure. In addition, placement of landscaping adjacent to the building is discouraged due to the potential to induce water into these subgrade soils or fill by the irrigation system.

9.3 PAVEMENTS

A pavement section is a layered system designed to distribute concentrated traffic loads to the subgrade. Performance of the pavement structure is directly related to the physical properties of the subgrade soils and the traffic loadings. A uniformly compacted subgrade is vital for good pavement performance. Pavement design procedures are based on strength properties of the subgrade and pavement materials, along with the design traffic conditions. For pavement thickness design, soils are represented by means of a California Bearing Ratio (CBR) value. Laboratory testing determined a CBR value on the order of 6 percent for the natural sandy, silty clay subgrade, which is considered a low strength subgrade soil for supporting pavements under controlled placement conditions.

Traffic in the parking areas and driving lanes is expected to be light, consisting of passenger cars, pickup trucks, and occasional small delivery trucks. It is anticipated the pavement can be divided into one category of traffic intensity for design equal to a maximum 10 estimated ESAL's per day or less. If anticipated traffic loads differ from what is described above, Tetra Tech should be notified to re-evaluate these recommendations. Pavement section thicknesses recommended below for the anticipated traffic conditions were developed using the methods outlined in the AASHTO 1993/1998 design manual.

The design and construction criteria presented below should be observed for the pavement; construction details should be considered when preparing project documents.

- 1. All existing asphalt, concrete, demolition debris, existing fill, topsoil, organic material, and any other deleterious material should be removed from the proposed construction locations.
- 2. In preparation of the roadway subgrade, the subgrade should be scarified to a depth of 8 inches, moisture-conditioned to within 2 percent of optimum moisture content, and re-compacted in accordance with Item 3 in *Site Grading*.
- 3. Proof roll the existing subgrade with a fully-loaded 10 cubic-yard dump truck to identify any localized loose or soft areas. Localized loose or soft areas should be over-excavated a minimum depth of 12 inches and replaced with engineered gravel fill and compacted in accordance with Item 3 in *Site Grading*.
- 4. The following flexible pavement section or an approved equivalent should be used for the parking areas and driving lane pavements. Guideline specifications for construction and materials selection, based on the Montana Department of Transportation (MDT) Standard Specifications for Road and Bridge Construction, are included in Appendix A. As an alternative, the Montana Public Works guideline specifications may also be used.

Material	Standard-Duty Asphalt Thickness (inches)
Asphalt Concrete Surfacing	3
¾ or 1½ inch Crushed Aggregate Base Course (MDT Type B, Grade 2)	6
Subbase (to meet engineered gravel fill specifications in this report)	6
Total	15

10.0 CONTINUING SERVICES

Two additional elements of geotechnical engineering service are important to the successful completion of this project.

- 1. **Consultation with Tetra Tech during the design phase.** This is essential to ensure that the intent of the recommendations is incorporated in design decisions related to the project and that changes in the design concept consider geotechnical aspects.
- 2. **Observation and monitoring during construction.** Tetra Tech should be retained to observe the earthwork phases of the project, including the site grading and excavations, to determine that the subsurface conditions are compatible with those described in our analysis. In addition, if environmental contaminants or other concerns are discovered in the subsurface, Tetra Tech personnel are available for consultation.

11.0 LIMITATIONS

This study has been conducted in accordance with generally accepted geotechnical engineering practices in the region where the work was conducted. The conclusions and recommendations submitted in this report are based upon project information provided to Tetra Tech, data obtained from the exploratory borings drilled at the locations indicated. The nature and extent of subsurface variations across the site may not become evident until construction. Tetra Tech should be on site during construction, to verify that actual subsurface conditions are consistent with those described herein.

This report has been prepared exclusively for the client. This report and the data included herein shall not be used by any third party without the express written consent of both the client and Tetra Tech. Tetra Tech is not responsible for technical interpretations by others. As the project evolves, Tetra Tech should provide continued consultation and field services during construction to review and monitor the implementation of the recommendations and verify that the recommendations have been appropriately interpreted. Significant design changes may require additional analysis or modifications of the recommendations presented herein. Tetra Tech recommends on-site observation of excavations and foundation bearing strata and testing of fill by a representative of the geotechnical engineer.

APPENDIX A

Important Information about Your Geotechnical Engineering Report (Published by ASFE/GBA)

Tetra Tech Boring Log Descriptive Terminology Key to Soil and Rock Symbols and Terms

Classification of Soils for Engineering Purposes

Montana Guideline for Construction and Materials Requirements for Pavement Sections

Locations of Exploratory Borings (Drawing No. 1001-1)

Preliminary Site Layout (Provided by Intrinsik Architecture) (Drawing No. 1001-2)

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL ENGINEERING REPORT

More construction problems are caused by site subsurface conditions than any other factor. As troublesome as subsurface problems can be, their frequency and extent have been lessened considerably in recent years, due in large measure to programs and publications of ASFE/The Association of Engineering Firms Practicing in the Geosciences.

The following suggestions and observations are offered to help you reduce the Geotechnical-related delays, cost-overruns and other costly headaches that can occur during a construction project.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

A Geotechnical engineering report is based on a subsurface exploration plan designed to incorporate a unique set of project-specific factors. These typically include: the general nature of the structure involved, its size and configuration; the location of the structure on the site and its orientation; physical concomitants such as access roads, parking lots, and underground utilities, and the level of additional risk which the client assumed by virtue of limitations imposed upon the exploratory program. To help avoid costly problems, consult the geotechnical engineer to determine how any factors which change subsequent to the date of the report may affect its recommendations.

Unless your consulting Geotechnical engineer indicates otherwise, your Geotechnical engineer report should not be used:

- When the nature of the proposed structure is changed, for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one;
- when the size or configuration of the proposed structure is altered;
- when the location or orientation of the proposed structure is modified:
- when there is a change of ownership, or
- for application to an adjacent site.

Geotechnical engineers cannot accept responsibility for problems which may develop if they are not consulted after factors considered in their reports' development have changed.

MOST GEOTECHNICAL "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site exploration identifies actual subsurface conditions only at those points where samples are taken, when they are taken.

Data derived through sampling and subsequent laboratory testing are extrapolated by Geotechnical engineers who then render an opinion about overall subsurface conditions, their likely reaction to proposed conditions, their likely reaction to proposed construction activity, and appropriate foundation design. Even under optimal circumstances actual conditions may differ from those inferred to exist, because no Geotechnical engineer, no matter how qualified, and not subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be fare more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimize their impact. For this reason, most experienced owners retain their Geotechnical consultants through the construction stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Subsurface conditions may be modified by constantlychanging natural forces. Because a Geotechnical engineering report is based on conditions which existed at the time of subsurface exploration, *construction decisions should not be based on a Geotechnical engineering report whose adequacy may have been affected by time*. Speak with the Geotechnical consultant to learn if additional tests are advisable before construction starts.

Construction operations at or adjacent to the site and natural events such as flood, earthquakes or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical report. The geotechnical engineer should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Geotechnical engineers' reports are prepared to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Unless indicated otherwise, this report was prepared expressly for the client involved and expressly for purposes indicated by the client. Use by any other persons for any purpose, or by the client for a different purpose, may result in problems. *No individual other than the client should apply this report for its intended purpose without first conferring with the*

geotechnical engineer. No person should apply this report for any purpose other than that originally contemplated without first conferring with the geotechnical engineer.

A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when other design professionals develop their plants based on misinterpretations of a geotechnical engineering report. To help avoid these problems, the geotechnical engineer should be retained to work with other appropriate design professionals to explain relevant geotechnical findings and to review the adequacy of their plans and specifications relative to geotechnical issues.

BORING LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final boring logs are developed by geotechnical engineers based upon their interpretation of field logs (assembled by site personnel) and laboratory evalution of field samples. Only final boring logs customarily are included in geotechnical engineering reports. *These logs should not under any circumstances be redrawn* for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimize the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To minimize the likelihood of boring log misinterpretation, give contractors ready access to the complete geotechnical engineering report prepared or authorized for their use. Those who do not provide such access may proceed under the *mistaken* impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes which aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because geotechnical engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against geotechnical consultants. To help prevent this problem, geotechnical engineers have developed model clauses for use in written transmittals. These are not exculpatory clauses designed to foist geotechnical engineers' liabilities onto someone else. Rather, they are definitive clauses which identify where geotechnical engineers' responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your geotechnical engineering report, and you are encouraged to read them closely. your geotechnical engineer will be pleased to give full and frank answers to your questions.

OTHER STEPS YOU CAN TAKE TO REDUCE RISK

Your consulting geotechnical engineer will be pleased to discuss other techniques which can be employed to mitigate risk. In addition, ASFE as developed a variety of materials which may be beneficial. Contact ASFE for a complimentary copy of its publications directory.

Published by

8811 Colesville Road/Suite G106/Silver Spring, Maryland 20910/(301)565-2733

Tetra Tech Boring Log Descriptive Terminology Key to Soil Symbols and Terms

SOIL CLASSIFICATION CHART

			SYMBOLS		TYPICAL
IVI	AJUR DIVISIO	0113	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	Well-graded gravels, gravel sand mix- tures, little or no fines.
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)	ŝŝ	GP	Poorly graded gravels, gravel-sand mix- tures, little or no fines.
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH FINES	ŝŝč	GM	Silty gravels, gravel-sand-silt mixtures.
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	(***)**** ******** ********	GC	Clayey gravels, gravel-sand-clay mixtures.
	SAND	CLEAN SANDS		SW	Well-graded sands, gravelly sands, little or no fines.
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	RE THAN 50% AND MATERIAL IS RGER THAN NO. SANDY I SIEVE SIZE SOILS	(LITTLE OR NO FINES)		SP	Poorly graded sands, gravelly sands, little or no fines.
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	Silty sands, sand-silt mixtures.
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	Clayey sands, sand-clay mixures.
				ML	norganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
	FINE AND GRAINED CLAYS SOILS	LIQUID LIMIT LESS THAN 50		CL	norganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
SOILS				OL	Organic silts and organic silty clays of low plasticity.
MORE THAN 50% OF MATERIAL IS				МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	norganic clays of high plasticity, fat clays.
				ОН	Organic clays of medium to high plasticity, organic silts.
HIGHLY ORGANIC SOILS				PT	Peat and other highly organic soils.

Order of Descriptors

- Group Name

Dry Moist

Wet

Angular

Subangular

- Consistency or Relative Density
- Moisture Condition
- Color
- Particle size descriptor(s) (coarse grained soils only)
- Angularity of coarse grained soils
- Other relevant notes

Criteria For Des	criptors
Consistency of Fine	Grained Soils
Consistency	N-Value (uncorrected)
Very Soft	< 2
Soft	2 - 4
Medium Stiff	5 - 8
Stiff	9 - 15
Very Stiff	16 - 30
Hard	> 30
Apparent Density of Coa	arse Grained Soils
Relative Density	N-Value (uncorrected)
Very Loose	< 4
Loose	4 - 10
Medium Dense	11 - 30
Dense	31 - 50
Very Dense	> 50

Moisture Condition

-Absence of moisture, dusty, dry to the touch. -Damp, but no visible water. -Visible free water.

Definition of Particle Size Ranges Soil Component Size Range

 Boulder
 > 12 in (300 mm)

 Cobble
 3 in (75 mm) - 12 in (300 mm)

 Carvel
 No. 4 Sieve (4.75 mm) to 3 in (75 mm)

 Sand
 No. 200 (0.075 mm) to No. 4 Sieves (4.75 mm)

 Silt
 < No. 200 Sieve (0.075 mm)*</td>

 Clay
 < No. 200 Sieve (0.075 mm)*</td>

*Atterberg limits and chart below to differentiate between silt and clay.

34-50 (0.4 ft), or 100 (0.3 ft)).WR denotes a zero blow count Liquid Limit (%) with the weight of the rods only.WH denotes a zero blow count with the weight of the rods plus the weight of the hammer.

MC=Moisture Content, LL=Liquid limit, PL=Plastic Limit -200%=percent soil passing 200 sieve, DD=Dry Density

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

See Soil Boring Information Special Provision.

(ex: 1-3-9)

falling 2.5 ft (750 mm) used to drive a 2 in (50 mm)

O.D. Split Spoon sampler for a total of 1.5 ft (0.45 m) of

Note: if the number of blows exceeds 50 before 0.5 ft

blows in parentheses (ex: 12-24-50 (0.09 m),

(0.15 m) of penetration is achieved, the actual penetration

rounded to the nearest 0.1 ft (0.03 m) follows the number of

Soil Classifications are Based on the Unified Soil Classification System, ASTM D2487 and D2488. Also included are the AASHTO group classifications (M145). Descriptions are based on visual observation, except where they have been modified to reflect results of laboratory tests as deemed appropriate. Example

SPT (Standard Penetration Test-ASTM D1586): The number of blow

penetration.Written as follows:first 0.5 ft (0.15 m) - second 0.5 ft (0.1

Subrounded-Particles have nearly plane sides, but have no edges. Rounded -Particles have smoothly curved sides and well-rounded corners and edges.

but have rounded edges.

-Particles have sharp edges and relative

plane sides with unpolished surfaces. -Particles are similar to angular description,

Example soil description: Sandy FAT CLAY (CH), soft, wet, brown. (A-7) Page 1 of 2

Т	etra T	ech Borir Key to	ng Log o Roc	j Descrip k Symbo	tive Te ols and	Terms
Rock Type	Symbol	Rock Type	Symbol	Rock Type	Symbol	Order of Descriptors
Argillite		Dolomite		Quartzite		- Rock Type - Color - Grain size (if applicable)
Basalt		Gneiss		Rhyolite		- Stratification/Foliation (as applicable) - Field Hardness - Other relevant notes
Bedrock (other)		Granitic		Sandstone	• • • • • • • • • • • • • • • • • • •	Criteria For Descriptors Grain Size
Breccia		Limestone		Schist		<u>Description</u> <u>Characteristic</u> Coarse Grained -Individual grains can be easily

Shale

Fine Grained	-Individual grains can be dis- tinguished with difficulty
Stratul	m Thickness

Thickly Bedded	3-10 ft (1-3 m)
Medium Bedded	1-3 ft (300 mm - 1 m)
Thinly Bedded	2-12 in (50-300 mm)
Very Thinly Bedded	< 2 in (50 mm)

Rock Field Hardness

Siltstone

Conglomerate

0,0

Claystone

Very Soft Soft	 -Can be carved with knife. Can be excavated readily with point of rock hammer. Can be scratched readily by fingernail. -Can be grooved or gouged readily by knife or point of rock hammer. Can be excavated in fragments from chips to several inches in size by moderate blows of the point of a rock hammer.
Medium	-Can be grooved or gouged 0.05 in (2 mm) deep by firm pressure of knife or rock hammer point. Can be excavated in small chips to pieces about 1 in (25 mm) maximum size by hard blows of the point of a rock hammer.
Moderately hard	-Can be scratched with knife or pick. Gouges or grooves to 0.25 in (6 mm) can be excavated by hard blow of rock hammer. Hand specimen can be detached by moderate blows.
Hard	-Can be scratched with knife or pick only with difficulty. Hard hammer blows required to detach hand specimen.
Very Hard	-Cannot be scratched with knife or sharp rock hammer point. Breaking of hand specimens requires several hard
	blows of a rock hammer. Notes:

UCS = Unconfined Compressive Strength obtained from laboratory testing at the given depth. See Soil Boring Information Special Provision. Miscellaneous Soil/Rock Symbols and Terms

Concrete Asphalt	Explanation of Text Fields in Boring Logs: Material Description: Lithologic Description of soil or rock encountered. Remarks: Comments on drilling, including method, bit type, and problems encountered. Unless stated on logs as being surveyed by district survey, all locations are considered approximate.
Water Boulders and C Coal Fill	General Notes - Descriptions on these boring logs apply only at the specific boring, and at the time the time the borings were made. These logs are not warranted to be representative of subsurface conditions at other locations or times. - Water level observations apply only at the specific boring, and at the time the borings were made. Due to the variability of groundwater measurements given the type of drilling used, and the stratification of the soil in the boring, these logs are not warranted to be representative of groundwater conditions at other locations or times. - Other terms may be used as descriptors, as defined by the profession.
Millings Topsoil	Soil and Rock descriptions are based on visual observation, except where they have been modified to reflect appropriate. Image: Auger index
	Example Rock Log SANDSTONE, gray, fine grained, thickly bedded, hard field hardness.

CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

ASTM Designation: D 2487 – 83 (Based on Unified Soil Classification System)

	MAJ	OR DIVISIONS		GROUP SYMBOL	GROUP NAME
	Gravels	Clean Gravels	$Cu \ge 4 \text{ and } 1 \le Cc \le 3^{E}$	GW	Well graded gravel F
	More than 50%	Less than 5% fines	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
	fraction retained on	Gravels with	Fines classify as ML or MH	GM	Silty gravel FGH
Coarse-Grained Soils More than 50% retained on No. 200	No. 4 sieve	More than 12% fines	Fines classify as CL or CH	GC	Clayey gravel ^{FGH}
sieve	Sands	Clean Sands	$Cu \ge 6 and 1 \le Cc \le 3^{E}$	SW	Well-graded sand ¹
	50% or more of coarse	fines	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand ¹
	faction passes No. 4	Sands with Fines	Fines classify as ML or MH	SM	Silty Sand GHI
	sieve	fines	Fines classify as CL or CH	SC	Clayey sand GHI
		Inorganic	PI > 7 and plots on or above "A" line	CL	Lean clay KLM
	Silts and Clays		PI < 4 or plots below "A" line	ML	Silt ^{KLM}
Fine-Grained Soils	than 50	Organic	Liquid limit – oven dried Liquid limit – not dried <0.75	OL	Organic clay ^{KLMN} Organic silt ^{KLMO}
the No. 200 sieve		Inorganic	PI plots on or above "A" line	СН	Fat clay KLM
	Liquid limit 50 or		PI plots below "A" line	MH	Elastic silt KLM
	more	Organic	Liquid limit – oven dried Liquid limit – not dried < 0.75	ОН	Organic clay ^{KLMO} Organic silt ^{KLMO}
Highly organic soils	Primarily organic	c matter, dark in co	olor, and organic odor	PT	Peat

^A Based on the material passing the 3-in. (75-mm) sieve.

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% require dual symbols:

GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay

^D Sands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt SW-SC well-graded sand with clay SP-SM poorly graded sand with silt SP-SC poorly graded sand with clay

- ^E Cu = D_{60}/D_{10} Cc= $(D_{30})^2$ / $(D_{10} \times D_{90})$ ^F If soil contains ≥15% sand, add "with
- sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.
- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains ≥15% gravel, add "with gravel" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.

^J If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.

- ^K. If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel", whichever is predominant.
- ^L If solid contains ≥ 30% plus No. 200, predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A: line.
- ^P PI plots on or above "A: line.
- ^Q PI plots below "A: line.

MONTANA GUIDELINE CONSTRUCTION AND MATERIALS REQUIREMENTS FOR PAVEMENT SECTIONS

1. Minimum Density Requirements

Material	Percent of Maximum	Method
Asphaltic concrete surfacing or base	97 or 92	ASTM D1559 (Marshall)* ASTM D2041
Crushed or uncrushed granular base course	95	ASTM D698
Subgrade (top 6 inches)**	95	ASTM D698

* 50 blows each end of specimen; sampled from truck at time of production.

** For all alternatives. Clay soils should be compacted at moisture contents within +/- 2 percent of optimum.

Maximum lift thickness should be 3 inches for asphaltic concrete and 8 to 12 inches for granular base course. Minimum lift thickness for gravel should be twice the maximum size of aggregate.

2. Aggregate Base Course Grading Requirements

Screen or Sieve Size	3/4-Inch Crushed Leveling Course (Crushed Top Surfacing, Type A, Grade 2) - % passing	1-1/2-Inch Crushed Base Course (Crushed Base Course, Type B, Grade 2) - % passing	3-Inch Uncrushed Subbase Course (Crushed Base Course, Type A, Grade 2) - % passing
3-inch			100
1-1/2-inch		100	
3/4-inch	100		
No. 4	40 - 70	25 - 55	25 - 60
No. 10	25 - 55		
No. 200	2 - 10	0 - 8	0 - 12
Mechanically fractured faces, one or more on plus No. 4 aggregate - % minimum	50	50	No requirement

In addition to the grading requirements shown, aggregate quality should conform to the following Montana Department of Highway Specifications, 1995 edition, or to Montana Public Works Standard Specifications.

<u>Material</u> 3/4-inch crushed leveling course (Crushed Top Surfacing, Type A, Grade 2)	MHD Specification M701.02 (E)
1-1/2-inch crushed base course (Crushed Base Course, Type B, Grade 2)	M701.02 (D)
3-inch uncrushed subbase course (Crushed Base Course, Type A, Grade 2), with crushing not a requirement	M701.02 (C)

3. Asphaltic Concrete Aggregate Production Grading Requirements

Screen or Sieve Size	Asphaltic Concrete Surfacing or Base (Plant Mix, Grade B) - % Passing	Job Mix Tolerance - % Passing
1-1/2-inch		
1-inch		
3/4-inch	100	
1/2-inch	86 - 90	+/-7
3/8-inch	75 - 79	+/-7
No. 4	51 - 57	+/-7
No. 10	32 - 40	+/-6
No. 40	14 - 16	+/-4
No. 200	4.5 - 6.5	+/-1.5

In addition to the grading requirements shown, the aggregate quality should conform to the applicable portions of the Montana Public Works Standard Specifications or the Montana Department of Highways Specifications, Article 30.02 and M-701.03 (A) and (B), and should have a retained coating of at least 95 percent when tested for stripping in accordance with ASTM D1664.

4. Asphaltic concrete mix designs should be submitted by the contractor, and should meet the following requirements:

		Asphaltic	Concrete
Property	Test Method	Surfacing	Base
Stability, pounds, minimum	ASTM D1559*	1200	800
Flow, 1/100-inch units	ASTM D1559*	8 - 18	8 - 20
Air voids, percent	ASTM D3203	3 - 5	3 - 8
Voids in mineral aggregate (VMA), percent, minimum	Asphalt Institute Manual MS-2	14	12 or 14**
Immersion-compression retained strength, percent	ASTM D1075	70	70

* 50 blows each end of specimen

** Mixes using 1-1/2-inch maximum size aggregate require a minimum of 12 percent VMA and mixes using 3/4-inch maximum size aggregate require a minimum of 14 percent VMA.

MAPLE STREET

TOTAL REQUIRED FOR NAVIGATION CENTER: 42 SPACES

SITE AND BUILDING LAYOUT SHOWN PRELIMINARILY AND IS SUBJECT TO CHANGE

PRELIMINARY NOT FOR CONSTRUCTION

Date

Description No.

revisions

MISSOULA, MONTANA

address

___project code

2020-06-18 sheet

Drawing No. 1001-2

APPENDIX B

Logs of Exploratory Borings (Figures 1 through 19)

Figure No. 1 LOG OF BORING

	Fax: (406) 54:	3-30	88				Boring	BH-1								Sheet 1 of 1
	Projec	t: T	rinit	y Ap	bart	ments - Site 1	(Mu	ıllan	Rig: Mobile B-61	Boring Locatio	on N:	46.883	300	3				
		F	(d)						Hammer: Auto	Coordinates	<u>E:</u>	-114.0	243	33				
	Projec			er:					Boring Diameter:	System: Decin	nal D	egrees					Тор	of Boring
	11/-0/	510								Abandonment	Moth	nod:					Ele/	/ation: 105.5 ft
.GPJ	Date S	art	ed:			Date Finishe	d:		Drilling Fluid:	Backfilled with	Cutti	inas						
OAD	Driller		Kee	ofe		5/28/20			I ocation: Defer to									
AN F	Logae	r:A	ndre	w V	Vari	ren			Loodin Kelel IO	Sile Map								
VULL	00								I				i					
3S - 1	Depth	٦	g	%)	()	nut	λ					Depth						Domoriko
0 LO	(11)	ratio	e Ty	very	0	, Co	olo		Material Des	cription		(11)	(%			(%)		and
RING	Elev.	0 O	ldme	eco	g	Slow	Lith					Elev.) []	بـ	Ļ	500	٥	Other Tests
S BO	(11)		w	Ř		ш						(11)	≥	-	₽	Ŷ		
ENT			X	100		6 - 11 - 14			PSOIL, moist.			0.3 105 2						
RTM		1	1Å	100		-		SII	_T with sand (ML), m	edium stiff to ve	ery	100.2						
APA		I	Â					pla	isticity, some gravel.		,		9					
NITΥ			X	80		10 - 11 - 10												
E\TRI.																		
SITE	5		\mathbb{N}	87		6-6-7							9					
OAD	100.5		\square															
AN R																		
1ULL																		
GS/N		1	X	67		3-3-5												
S_LO		I	\square									9.0						
S\LAE	10		\mathbb{N}	50		9 - 40 - 50/0.4ft	° X	Po	orly-Graded GRAVE	L with silt and		96.5						
ENTS	95.5		$\backslash $				D_H	sa היי	bist. light brown. fine	to coarse graine	ed. r							
RTM	subangular to subrounded.																	
APA								В	oring Depth: 10.4 ft,	Elevation: 95.1	ft							
NITY																		
0\TRI																		
- 202(
ORT																		
S\REF																		
DRTS																		
REP(
ECH/I																		
EOTE																		
N:\GI																		
:39 -																		
20 12																		
/01/2																		
r - 07																		
Ъ.																		
+600;																		
EVISI																		
T_RI																		
- MD																		
RING																		
BOF																		
G OF			Wate	er L	evel	Observations		∑ Du Dri	ring Illing: Not Encountered		Rem	arks:						
T LC	After Drillin	a: No	t Rec	order	d			Af	ter illing: Not Recorded									

Figure No. 2 LOG OF BORING

	Fax: (40 ` 6) 543	3-30	88				Boring	BH-2								Sheet 1 of 1
ſ	Projec	: t: T	rinit	y Ap	bart	ments - Site 1	(Mu	llan	Rig: Mobile B-61	Boring Locatio	on N:	46.882	287	8				
		F	(b)				` <u> </u>		Hammer: Auto	Coordinates	E:	-114.0	246	601				
	Projec	t Ni	ımb	er:					Boring Diameter:	System: Decin	nal D	egrees					Ton	of Boring
	117-87	751(001						8 in	Datum: NAD8	33						Elev	vation: 103.2 ft
_	Dato 9	tart	٥d٠			Date Finishe	d٠		Drilling Fluid:	Abandonment	t Meth	od:						-
GP.	5/20/2	∩ ∩	eu.				u.		Nono	Backfilled with								
OAD	Drillor		'K.o.o	fo		5/20/20						5						
N R	Logge	. 0	ndra		Vor				Location. Refer to	Site Map								
JLLA	LUgge	91. A	nure	7 VV V	van	en												
NG LOGS - MI	Depth (ft) <i>Elev.</i>	peration	nple Type	covery (%)	ROD (%)	ow Count	ithology		Material Des	cription		Depth (ft) <i>Elev.</i>	(%)		0 (%)		Remarks and Other Tests	
BOR	(ft)	σ	ng S	Rec		ä	-					(ft)	ž	F	ᆸ			
ENTS			X	40		8-18-28	<u>, , , , , , , , , , , , , , , , , , , </u>	ТС	PSOIL, moist.		/	0.3						
RTM		1	B	40		0 10 20		SI	LT with sand (ML), m	edium stiff to	:4. /	102.9						
Y APA		ł		07		13 - 11 - 11		na So	me gravel from 0.5 t	o 2 ft, grades to	b lity,		8					
TRINIT		2	Å	07				ne	any no gravel by 4.5	11.								
SITE	5		\square	73		5-4-4												
ROAD	98.2	J	\bowtie	-								5.8						
LAN								Po loc	orly-Graded SAND v	vith silt (SP-SM) ht tan/brown_fir), ne	97.4						
MUL		1	\bigtriangledown	70		224		to	medium grained, sub	prounded.			3					
-OGS		ŀ	\square	13		5-2-4												
LAB_I			\bigtriangledown			4 4 5												
NTS/	10 93.2		\wedge	73		4-4-5						105						
RTME								В	oring Depth: 10.5 ft,	Elevation: 92.7	r ft	92.7						
APA																		
RINIT																		
020\TF																		
JRT 2 (
S\REP(
ORTS																		
HAREP																		
OTEC																		
N:\GE(
2:39 - 1																		
1/20 1;																		
. 07/01																		
GDT -																		
.+600																		
SED_2																		
REVIS																		
MDT																		
- 9N																		
- BOR																		
JG OF			Wate	er L	evel	Observations		∑ Du Dri	r ing illing: Not <u>Encoun</u> tered		Remarks:							
L	After Drillin	g: No	ot Rec	orde	d			▼ Af Dr	ter illing: Not Recorded									

Figure No. 3 LOG OF BORING Boring BH-3

	1 u	400	, •••		00				Boung									
	Projec	:t: T F	rinit Rd)	y Ap	bart	ments - Site	1 (Mu	llan	Rig: Mobile B-61 Hammer: Auto	Boring Locatio	on N: E:	I N: 46.883006 E: -114.024661						
	Projec	t Nu	umb	er:					Boring Diameter:	System: Decir	nal D	egrees					Ton	of Boring
	117-87	7510	001						8 in	Datum: NAD8	33						Elev	vation: 101.4 ft
2	Date S	tart	ed:			Date Finishe	d:		Drillina Fluid:	Abandonment	t Meth	nod:						
D.GF	5/28/2	0				5/28/20			None	Backfilled with	Cutti	ings						
ROA	Driller	: 0	'Kee	efe	I				Location: Refer to	Site Map								
LAN	Logge	r: A	ndre	w V	Varı	ren												
MUL																		
GS -	Depth	S	be	(%)	(%	nut	gy					Depth						Pomarke
O LO	(11)	ratio	e T)	very	0	ő	olo		Material Des	cription		(14)	8			(%)		and
RINC	Elev.	00	due	eco.	R a	Slow	Ē					Elev.	l⊆ 2		Ļ	8	0	Other Tests
S BO	(11)	_	ŭ	Ř		Ш						(11)	2	-	₽			
ENT			\mathbb{N}	100		5 - 10 - 10			DPSOIL, moist.			0.3 101 1						
RTM		1	\square					SI	LT with sand (ML), s	tiff to very stiff,		101.1						
APA		I							casional gravel, grad	bes to silty sand			4					
Ϋ́Τ		1	X	73		10-9-5												
TRIN			\vdash									40						
SITE							0000	Si	lty SAND (SM), med	ium dense, sligh	ntly	97.4						
AD S	 96.4			100				m	oist, brown, fine grai	ned, subrounde	d.							
N RO						00 00 00	ĵĴ	Po	oorly-Graded GRAVE	EL with silt and		5.7 95 7						
LLA		l	X	40		29-36-36	ЬЩ	sa	nd (GP-GM), very de	ense, slightly		00.7						
%/MU		I	F					m	oist, light brown, fine	to coarse graine	ed,							
OGS		Ъ					[0	su	brounded to subang	ular.								
AB_L							Poll						1					
-S\L	_ 10 _		X	47		11 - 15 - 20	e X						[.]					
1ENT	91.4	1	\vdash				Polle											
RTN		ľ					0 Q											
APA		l					B-M											
ΝT							0											
NTRI							0											
2020			\mathbb{X}	88		33 - 50/0.3ft	0					14.8	2					
ORT								В	oring Depth: 14.8 ft,	Elevation: 86.6	6 ft	86.6						
REP																		
RTS																		
EPO																		
CH/R																		
OTEC																		
)GE(
: - C																		
12:39																		
/20																		
10/20																		
от - (
Ъ.																		
2009																		
а																		
KEVIS																		
T_RI																		
- MD																		
DNG																		
BOR																		
J OF			Wate	er I	evel	Observations			uring		Rem	arks						
LOG	After		- rate	- L				≚ Dr	illing: Not Encountered									
F	🖳 Drillin	g: No	ot Rec	corde	d			I¥ D	rillina: Not Recorded									

Figure No. 4 LOG OF BORING

_	ал. (400	343.	-300	0				DOLIN	у БП-4								Sheet 1 01 1
Ī	Projec	t: T R	rinity d)	Ара	artr	nents - Site 1	(Mu	llan	Rig: Mobile B-61 Hammer: Auto	Boring Locatio	on N: E:	46.882	275 243	2 398				
I	Projec	t Nu	imbe	r:					Boring Diameter:	System: Decir	mal D	egrees					Ton	of Boring
ŕ	17-87	7510	01						8 in	Datum: NAD8	83						Elev	vation: 104.1 ft
2	Date S	tart	ed:			Date Finishe	d:		Drilling Fluid:	Abandonment	t Meth	nod:						
10.0	5/28/20	0			;	5/28/20			None	Backfilled with	n Cutti	ngs						
ROA	Driller	: 0	Keef	e					Location: Refer to	Site Map								
IAN	ogge	r: A	ndrev	N W	arr	en				•								
MUL																		
- SO	Depth (ft)	5	<u>be</u>	%	%	ount	λĝ					Depth (ft)						Remarks
GLO		eratio	e T	Ver		ŭ ≥	plot		Material Des	cription			(%)			%)		and
NIN	Elev. (ft)	ð	amp	eco	8	Blov	Ē					Elev. (ft)	ğ	<u> </u>	۲	50	9	Other Tests
SBC	(19		S	2		_						0.0	<	-	"		-	
ENT			$\mathbb{N}_{\mathbf{i}}$	87		6 - 10 - 12			PSOIL, moist.		/	0.3 103.8						
ARTN-	-		\square					SII	_ I With sand (ML), V ahtly moist_brown ⇒	ery stiff to hard,								
APA-	-	I	$ \forall $						casional gravel, grav	des to silty sand.			7					
∠ LN	-			87		20 - 20 - 18				-								
TRI	_																	
SITE	5		¥.	87		12 - 11 - 7							6					
OAD	99.1	1																
N R	-	I																
ULL/	_							01	ty CAND (CM) mod	ium danaa aliah	ath (7.0		NV	NP	37		
M\SE	_			90					bist. brown. fine to r	nedium arained.	iuy	<i>97.1</i> 8.0				0.		
ĕ			\mathbb{N}	60		16 - 33 - 32	° H	su	bangular to subroun	ded.	' /I	96.1	2					
LAB	40	1	ĽЦ'				Palle	Po	orly-Graded GRAVE	EL with silt and								
NTS	94.1						696	sa	nd (GP-GM), very de pist_light brown_fine	ense, slightly to coarse grain	ad							
TME	_	J					5 H	su	brounded to subang	ular.	eu,							
PAR	_						00		5									
۲×⊿							$ \circ 0 $											
RIN -	_	1																
120/T	-		$ \downarrow $				[0]											
RT 20	15	-	!\	54	ľ	25 - 48 - 50/0.3ft	0					15 3						
EPOI	09.1							В	oring Depth: 15.3 ft,	Elevation: 88.8	3 ft	88.8	-					
S/RI																		
OR																		
NREF																		
ECH																		
EOT																		
2 Z																		
- 33																		
20 12																		
/01/:																		
- 01																		
GD1																		
+600																		
D_2(
VISE																		
ШЖ																		
MDT																		
ЪЧ																		
ORII																		
В НО			14/			O haran di			ring		Dairi	orkei						
9 -	Aftor		Water	Le	vel	Observations			Iling: Not Encountered		Rema	arks:						
μ	Anter Drillin	a. No	t Poco	rdod					uer illinge Not Docordod									

2525 Palmer Street, Suite 2 Missoula, MT 59808 Phone: (406) 543-3045

Figure No. 5 LOG OF BORING

46.882 114.02 grees od: ngs	2558	8			Top Ele	o of Boring					
od:		23	•		Top Ele	o of Boring					
od: igs					Ele	vetion: 101.0 ft					
od: Igs					Elevation: 101.0 f						
iys											
Donth											
(ft)	_			(%		Remarks					
Elev.	с (%			00	۵	Other Tests					
(π) 0.2	Σ		₫	Ϋ́	٥						
0.3 100.7	23	16		54		pH= 8.05					
	6					ohm-cm					
						CBK= 0					
4.0	1										
97.0											
						9 feet for future					
<u>9.0</u>						infiltration testing.					
92.0											
	Depth (ft) Elev. (ft) 0.3 100.7 4.0 97.0 99.0 92.0	Depth (ft) (%) Elev. (ft) 0.3 0.0.3 1 0.3 1 97.0 1 9.0 92.0	Depth (ft) (%) J Elev. (ft) 0.3 1 0.3 100.7 23 16 4.0 1 1 97.0 1 1 99.0 92.0 1	Depth (ft) S J <thj< td=""><td>Depth (ft) (%) 1 <th1< th=""> 1 <th1< th=""> 1 <th1< td=""><td>Depth (ft) S I <thi< td=""></thi<></td></th1<></th1<></th1<></td></thj<>	Depth (ft) (%) 1 <th1< th=""> 1 <th1< th=""> 1 <th1< td=""><td>Depth (ft) S I <thi< td=""></thi<></td></th1<></th1<></th1<>	Depth (ft) S I <thi< td=""></thi<>					

50	Water Level Observations	└── During Drilling: Not Encountered	Remarks:
	∑ After Drilling: Not Recorded	After Drilling: Not Recorded	

Figure No. 6 LOG OF BORING Boring BH_6

T ax.	(400) J4	5-50	000				Bonny	вп-о								Sheet 1 01 1
Proje	ect:	Trinit Rd)	y Ap	part	ments - Site 1	(Mu	lan	Rig: Mobile B-61 Hammer: Auto	Boring Locatio	on N: E:	46.882 -114.0	253 243	8 357				
Proje	ect N	umb	er:					Boring Diameter:	System: Decin	mal D	egrees					Ton	of Poring
117-	8751	001						8 in	Datum: NAD8	83	0					Flev	vation: 102.5 ft
- Dete	Ctor	4 a al .			Doto Finicha			Drilling Eluidi	Abandonment	t Meth	od:						
	Slar	lea:				u:		Drilling Fluid:	Backfilled with	n Cutti	nas						
	20		fa		5/29/20					- Outu	ngo						
		hee		Mar				Location: Refer to	Site Map								
	jer. /	Anure	evv v	van		_						_	_	_	_		
ອັ ບ່ອ ອີ	h c	þe	(%)	(%)	ant	gy					Depth						Pomorko
) 	atio	P L	/ery	0	ပိ	olo		Material Des	cription		(11)	3			(%)		and
Elev	: jā	đ	S S	RO	No	Lith			•		Elev.	<u>ာ</u>		Ι.	8	0	Other Tests
່ອິ (<i>ft</i>)		ଞ	Re		•	-					(ft)	ž	E	ਙ	Ŗ	ā	
NTS						271	_\ ΤC	OPSOIL, moist.		Г	0.3						
Ξ Ψ	-	X	73		8-22-17		Sil	ty, Clayey SAND (SO	C-SM), medium	/	102.2						
PARI		\rightarrow					de	nse to dense, slightly	moist, brown,	,							
≺ AF		\mathbb{N}	70		14 - 13 - 10		lov	v plasticity, occasion	al gravel 0.3 ft to	to		6					
	-	$^{\circ}$	13		14-10-10		11	t.									
E/TF			}														
LIS 5		'	47		13-23-26	KH	Pr	orly-Graded GRAVE	I with silt and		4.5						
97.5	71	B				$ \left \circ \right ^{\alpha} $	sa	nd (GP-GM), dense,	slightly moist,		3 0.0		NV	NP	12		
Ϋ́	-					00	lig	ht brown, fine to coa	se grained,								
					00 50/0 of	0	su	brounded to subang	ular, occasional								
S/ML		X	38		32 - 50/0.3tt	Pollo	rei	covered at the surfac	sample e from auger								
0						090	cu	ttings classified as w	ell graded grave	el							
AB -	- 4					ЬЩ	wi	th silt and sand (GW-	-GM).			1					
10 _ ا ^۲	_) 🌋	67		21 - 39 - 36												
⊻ 92.5 ₹		(\vdash)				[0]											
- TI		'				00											
AP/	- 1					e Xe											
É z-	_					Poto											
0/TRI					50/0.0%	691											
2020		\sim	67	<u> </u>	50/0.3n		В	oring Depth: 14.2 ft,	Elevation: 88.3	3 ft	\						
ORT																	
REP																	
RTS																	
POF																	
HAR																	
TEC																	
GEO																	
- -																	
2:39																	
20 1:																	
7/01/																	
- 01																	
GD																	
.+600																	
0_20																	
/ISE																	
RE																	
MDT																	
- 9																	
NIN																	
л В В							-										
0000		Wate	er L	evel	Observations		∑ Dr	ring illing: Not Encountered		Rema	arks:						
	er lina: N	ot Rec	orde	ed –				ter illing: Not Recorded									

Figure No. 7 LOG OF BORING

		, 00		0-00	00				Doning									Officer 1 of 1
	Projec	t:T R	rinit (d)	y Ap	oart	ments - Site	1 (Mu	llan	Rig: Mobile B-61 Hammer: Auto	Boring Location Coordinates	on N: E:	46.882 -114.0	243 248	8 349				
	Projec	t Nu	ımb	er:					Boring Diameter:	System: Decir	mal D	egrees					Top	of Borina
	117-87	′510	01						8 in	Datum: NAD	83						Elev	vation: 99.7 ft
2	Date S	tart	ed:			Date Finishe	ed:		Drilling Fluid:	Abandonment	t Meth	nod:						
O.GF	5/29/20	ງ ງ	- ai			5/29/20			None	Backfilled with	n Cutt	ings						
ROAL	Driller	: 0'	Kee	efe		0/20/20			Location: Refer to	Site Man		-						
ANF	Logae	r: A	ndre	ew V	Vari	ren				One map								
	- 55 -												1					
S-N	Depth	_	ø	(%)		E	<u> </u>					Depth						
00	(ft)	tion	ž	2°	%	Cou	log		Material Dec	orintion		(ft)				%		Remarks
g	Elev.	oera	be	No.	g	Ň	itho		Waterial Des	cription		Elev.	18			0		Other Tests
30R	(ft)	σ	San	Rec	"	ä	_					(ft)	Σ	F	님			
ITSI			 /	1					PSOIL moist			0.3						
MEN			IX.	87		4 - 14 - 8		S	andy Silty CLAY (CL	-ML) verv stiff	/	99.4						
ART		Ь	\vdash					sli	ghtly moist, brown, l	ow plasticity,		2.0						
ΥAF			\setminus	1		28, 22, 20	6 M	∖ oc	casional gravel 0.3 f	t to 1 ft.		2.0 97.7	1					
Ĺ			$ \wedge$	41		20-23-20	βĤ	P	orly-Graded GRAVE	L with silt and								
E/TR]			6di	sa	ina (GP-GM), mediur	n dense to very	'n							
SITE	5	P	\mathbb{N}	40		15 - 21 - 20	$ \left \circ \right $	fin	le to coarse grained.	subrounded to	,							
OAD	94.7		\square					su	bangular, occasiona	l cobbles, moist	at							
N R		I					° A	ap	proximately 15 ft.									
ULL/				,			Polle						1					
S\MI			IX	67		19 - 44 - 50	6 A						'					
LOG			Ø				[°]]										
AB			X.				60]					1					
TS/L	10	1	X	73		35 - 48 - 50	$ \left \circ \right $											
MEN	09.7						[o]											
ART							° N											
ΥAP			13				Polle											
LINIT.			Ź.Ź.				6 A											
0\TR							[°] U]										
202	15	1	\mathbb{N}	53		27 - 18 - 12	00						6					
ORT	84.7		\square				$\wp \oplus$											
REP		L						1										
RTS/							\circ											
EPO							Polle				∇							
HIR							6 XI				<u> </u>							
DIEC			k7	1			p H											
\GEC	$-\frac{20}{707}$	1	IX.	53		8 - 12 - 13	ρΨ											
ż	19.1	I	F				βŴ	1										
2:39	_						60											
/20 1							$\left[\circ \right]$											
7/01							Polle											
7 - C				ļ			0 H											
Ъ.+	25		$ \vee$	20		12 - 17 - 27	Patte											
2009	74.7		$V \setminus$				ρŶ	1		<u> </u>	- <i>F</i>	, 25.5						
								В	oring Depth: 25.5 ft,	Elevation: 74.2	2 TČ	74.2						
EVIS																		
L R																		
- MC																		
SING																		
BOF																		
JO C			Wate	ər L	.evel	Observations					Rem	arks:						
Ŋ	After		. =						nnng: ιο. ιπ. (σ <i>1.6 π)</i> fter		1							
F	💾 Drillin	g:No	t Red	corde	d			<u> </u>	rilling: Not Recorded									

Figure No. 8 LOG OF BORING

Г	ax: (400) 54	3-30	00				вониб	ВП-0								Sheet 1 01 1
Ρ	rojec	:t: T F	rinit (d)	y Ap	part	ments - Site	1 (Mul	lan	Rig: Mobile B-61	Boring Locatio	on N: E:	46.882	241 247	6 798				
Ρ	rojec	t Nu	ımb	er:					Boring Diameter:	System: Decir	mal D	egrees					Ton	of Boring
1	- 17-87	7510	001						8 in	Datum: NAD8	83	•					Elev	vation: 100.4 ft
	ato S	tart	od.			Dato Einisho	d.		Drilling Eluid:	Abandonment	t Meth	nod:						
GP.	ale 3	∩ ∩	eu.				u.		Drining Fluid.	Backfilled with	n Cutti	nas						
	Z9/Z		'K or	ofo		5/29/20				0.1 14	-	<u> </u>						
Z L		. U	ndre		Nar	ron			Location. Refer to	Site Map								
	ogge	1.7	iuie		vai								_	_				
NG LOGS - MI	epth (ft) Elev.	beration	ple Type	covery (%)	RQD (%)	ow Count	ithology		Material Des	cription		Depth (ft) <i>Elev</i> .	(%)			0 (%)		Remarks and Other Tests
S BORI	(ft)	σ	San	Rec		Bi						(ft)	MO	F	PL	- 70		
ENT			\mathbb{N}	87		4 - 12 - 14			DPSOIL, moist.			0.3 100 1						
RTN -	_	1	\square					Sa	andy, Silty CLAY (CL and slightly moist to n	-ML), very stiff t	0							
APA -	_	ľ	7					pla	asticity.		vv		4					
F	_	1	IX.	73		7-8-32			·			3.0						
TRI			É					PC m/	oriy-Graded GRAVE	:∟ with sand (GF dense_slightly	P),	97.4						
SITE	5		\mathbb{N}	60		14 - 27 - 28		m	pist to wet, light brow	n, fine to coarse	e							
g g	95.4	1	\square					gr	ained, subrounded to	subangular,								
N RC	_							00	casional cobbles, mo	oist at								
JLLA	_							aμ	ทางมากลเยาง 14.3 มี.									
S/ML			\mathbb{N}	73		20-32-40							1					
ő	-		\square	10														
AB	_		-				•											
TS/L	10			80		19 - 38 - 49								22	17	1		
NEN	90.4	1	1											22	17	'		
ARTI	_		14															
AP/	-	Ъ					•••											
Ê Z	_																	
D/TR	_						.•1											
202(15	1	X	71		39 - 50/0.2ft							3					
ORT 9	35.4	ľ	<u> </u>	1														
REP-	_	l																
RTS/	_	ľ																
PO		Ь									_							
H/R	_										Ŷ							
TEC -	_		k7				.•											
<u>е</u>	20 20 4	1	IX.	53		9 - 10 - 14												
ż (.0.4		F	1														
12:35							•											
/20	_																	
02/01	_																	
L	_	1	L ,	ļ														
<u>ъ</u> .	25		X	47		8 - 11 - 13												
2000	75.4		$V \setminus$						oring Donth: 05 5 4	Elovation: 74.0) #	25.5						
Ë								В	oning Depth: 25.5 ft,	Elevation: 74.9	, 1[74.9						
(EVI)																		
1 F																		
- MI																		
RING																		
BQ																		
ЧО 5 10			Wate	er L	.evel	Observations			uring		Rem	arks:						
Ĭ,	After			_				<u>÷</u> Dr ▼At	ining: 18.3 π (82.1 π) iter									
FF	Drillin	g: No	ot Rec	corde	d		-	<u>¥</u> D	rilling: Not Recorded									

2525 Palmer Street, Suite 2 Missoula, MT 59808 Phone: (406) 543-3045

Figure No. 9 LOG OF BORING

	Fax: (406	543	3-30	88	-		Boring	J BH-9								Sheet 1 of 1
	Projec	t: T	rinit	y Ap	bart	ments - Site 1	(Mull	an Rig: Mobile B-61	Boring Location	on N:	46.882	245					
	Droiog		d)	~ * '				Hammer: Auto	Coordinates	E:	-114.0	24()8				
	117_87	7510		er:				Boring Diameter:	System: Decir	mai De op	egrees	5				Тор	of Boring
	D.1.0	510							Abandonment	83 t Meth	od.					FIG	vation: 102.8 ft
.GPJ	Date S	tart	ea:			Date Finisne	a:	Drilling Fluid:	Backfilled with	n Cutti	nas						
OAD	0/1/20 Driller	• 0	Kee	fe		6/1/20		I ocation: Defer to	Site Man								
AN R	Logae	. () e r: Ji	m P	ierc	е			Location: Relef to	Site Map								
VULL	33-			_	-							1					
3S - N	Depth		8	(%)	()	nut	٨				Depth						Domonika
S LOC	(11)	ratio	eΤy	/ery	0	S	olo	Material Des	cription		(11)	1			(%)		and
RING	Elev.	0 O O O	due	eco	g	Slow	Lith		-		Elev.	l ⊇	_	Ļ	S	٥	Other Tests
S BO	(11)		ű	Ř		ш					(11)	≥	Ч	₽	Ŷ		
ENT			\mathbb{N}	67		6-7-12		TOPSOIL, slightly mois	st.		0.2 102.6						
RTM		1	\square	01				Clayey SAND (SC), me	edium dense to								
APA		I						grained sand, fine grai	ned gravel.								
NITY		J	$ \vee $	87		18 - 16 - 16		0 / 0	0			°					
\TRI			\square								4.0						
SITE	5							Silty SAND (SM), loose	e, slightly moist,	,	98.8	5					
OAD	97.8	1	X	80		6-5-5		brown, nne grained, oc	casional gravel.	•							
AN R		ľ	\vdash														
ULL/																	Installed solid DVC to
3S/M			\mathbb{N}	67		5 - 13 - 26					8.0						9 feet for future
LOO			$\langle \rangle$	-			<u></u>	Poorly-Graded GRAVE	EL with sand (GF	P), ∣ um D	94.8	Ļ					infiltration testing.
LAB								grained, subrounded.	ist, glay, meuic		<u>8.7</u> 94.1						
INTS								Boring Depth: 8.7 ft,	Elevation: 94.1	ft							
RTME																	
APAF																	
Σ																	
TRIN																	
2020																	
DRT 2																	
REPC																	
RTS/F																	
POF																	
HRE																	
TEC																	
GEO																	
ï.																	
2:39																	
/20 1																	
7/01																	
01 - (
9+.G																	
2006																	
Ш																	
REVIS																	
E F																	
W - 5																	
RINC																	
F BO					_							_	_	_	_		
0 90			Wate	ar L	evel	Observations	7	During Drilling: Not Encountered		Rema	arks:						
L	After Drillin	a: No	t Rec	orde	d		<u> </u>	After Drilling: Not Recorded		1							

Figure No. 10 LOG OF BORING

	i ani (, • .						Bonnig									
	Projec	t: T F	rinit (d)	y Ap	part	ments - Site 1	(Mull	lan	Rig: Mobile B-61 Hammer: Auto	Boring Location Coordinates	on N: E:	46.882 -114.0	224 243	86				
	Projec	t Nu	ımb	er:					Boring Diameter:	System: Decir	mal D	egrees					Тор	of Boring
	117-87	751(01						8 in	Datum: NAD	83						Elev	vation: 100.7 ft
-	Date S	tart	٥d،			Date Finisher	4·		Drilling Fluid	Abandonment	t Meth	nod:						
GP.	6/1/20	lait	cu.			6/1/20	<i>.</i>		Nono	Backfilled with	n Cutti	ings						
OAD	Drillor	. ^	Kov	ofo		0/1/20				0.4		5						
NR	Loggo	. U			~				Location. Refer to	Site Map								
JLLA	Logge	ar. Ji		rero	je								_					
RING LOGS - MI	Depth (ft) Elev.	Operation	ample Type	ecovery (%)	RQD (%)	slow Count	Lithology		Material Des	cription		Depth (ft) Elev.	IC (%)	_	Ļ	200 (%)	0	Remarks and Other Tests
S BO	(11)		ю Ю	Å		ш						(11)	Σ		٩	Ŷ		
ENTS			\mathbb{N}	07		156		TC	OPSOIL, slightly moi	st.	7	0.5						
TME			M	67		4-5-0		FI	LL, Clayey SAND (S	C), dense to		100.2						
PAR			[1				me	edium dense, slightly	moist, dark								
TΥΑ		1	\vdash	1				Dro	own, fine grained, so	allered gravel,	th		4					
SINI'		1	IX.	67		11 - 14 - 27		as	phair ar 5.0 , more g	aveny with depi	u I.		Ĺ					
E/TF		1	\models															
LISC	5	ľ		80		8-6-6							6					
ROAL	95.7]	\bowtie	100				Pr		I with sand (CI	D)	5.5						
AN F							•	me	edium dense to verv	dense. slightly	· <i>)</i> ,	95.2						
ULL								m	pist to wet, gray to re	ed, fine to coars	se							
SS/M			1			10 10 10		gra	ained, subrounded to	o subangular,								
LOG			X	40		12 - 12 - 16		gra	avels to 2" in auger o	uttings, coarse								
AB		1	\vdash				.•1	sa	nd below water table									
TS/L	10	P	\bigtriangledown	1		14 - 23 - 32	•						1					
JEN	90.7	1	M	80		14-23-32.												
RTN		ľ		Ì														
APA		l																
lT≺		I					.•(
TRIN		l					•											
7020		ľ																
RT 2(15	b	\bigtriangledown	75		19 - 25 - 50/0.2ft							4					
POF	85.7		\bowtie	10														
S/RE							.•(
DRT																		
SEP(
CHF		1									<u> </u>							
OTE		1																
/GE(_ 20 80 7	1	$ \vee $	60		11 - 31 - 47	• • • •											
Ż			\square															
12:35]					.											
/20 1							•••											
7/01																		
T-0																		
GD	25	⊢₽	\vdash	1														
+600	75.7	1	IX	73		39 - 15 - 18	.•											
<u>0</u>			V				• •	D	oring Donth: 26.0.#	Elevation: 74 7	7 fł	26.0						
VISE								D	oning Depth. 20.0 It,		r IL	/4.7						
R																		
MDT																		
- 9																		
NINC																		
JE B(_										
0 90			Wat	er L	leve	Observations	7	<u>⊻</u> Dr	ring illing: 18.3 ft <i>(82.4 ft)</i>		Rem	arks:						
ЧĽ	After Drillin	a: No	t Red	corde	ed .		,	Af	iter rilling: Not Recorded									
⊢		MI- 110	1116	JUING	,u			<u> </u>	INITIAL INOL RECOLDED		1							

Figure No. 11 LOG OF BORING

Ducion	40 U	, e ii				(/) /	1	Dim Mahila D. 61			10.000	~-					
Projec	π:ι R	rinit (d)	y Ap	San	ments - Site	i (iviui	lan	Hammer: Auto	Boring Locatio	on N: F:	46.882	207 251	13				
Projec	t Nu	umb	er:					Boring Diameter:	System: Decir	mal D	egrees					Ton	of Boring
117-87	7510	001						8 in	Datum: NAD	83	U					Elev	vation: 99.3 ft
Date S	tart	٥d.			Date Finishe	d.		Drilling Fluid:	Abandonment	t Meth	nod:						
6/1/20	uit	cu.			6/1/20	u .		None	Backfilled with	n Cutti	ings						
Driller	: 0	'Kee	efe		0/1/20			Location: Refer to	Site Man								
Logge	r: Ji	m P	ierc	e					one map								
			_					•				i i					
Depth	F	/be	(%) /	(%	ount	gy					Depth						Remarks
	srati	le T	Ver	la	Ŭ	plot		Material Des	cription			(%)			%		and
Elev. (ft)	ð	amp	ecc	8	alo Blo	Ē					Elev. (ft)	ð		٦	50	8	Other Tests
()		S	æ		_						(-9	2	_	-	•		
		\mathbb{N}	93		4-5-5			DPSOIL, slightly mois	st.		0.5						
		\square					Sa	andy, Silty CLAY (CL edium stiff slightly m	-ML), SUIT IO loist_dark_brown	n r	1.5						
							lov	v plasticity, fine sand	l.	,	97.8						
		Y	87		4-4-4		Cla	ayey SAND (SC), loo	ose, slightly moi	ist,		1					
		\vdash					da	rk brown, fine graine	ed.								
5		\vdash									FO						
94.3	1	IX.	73		5 - 10 - 13		Pc	orly-Graded GRAVE	L with sand (G	P),	5.0 94.3						
		\vdash					me	edium dense to very	dense, slightly	to							
		L					rno SU	bangular, gray to re	2" in auder	ເບ							
		\boxtimes	75		12 - 50/0.3ft		cu	ttings, coarse sand l	enses below wa	ater		2					
							tat	ole.									
	1																
_ 10 _ 89.3		\mathbb{X}	0		50												
	Ь	\square	1														
						.•											
15		\square	56		16 - 50/0.4ft							5					
04.5		\square	1			.•1											
										∇							
										<u> </u>							
20		7			4 40 44												
79.3		X	67		11 - 13 - 14												
			1														
· _						•••											
25	┝┻	17															
74.3		X	53		6-9-11						00.0						
		¥ \	4	L			В	oring Depth: 26.0 ft,	Elevation: 73.3	3 ft	73.3 ×	L	L				
											<u> </u>						
							ח ,–	ring									
Aftor		Wate	er L	.eve	Observations		⊻ Dr	illing: 17.0 ft (82.3 ft)		Rem	arks:						
	g: No	t Rec	corde	d		-		illing: Not Recorded									

Figure No. 12 LOG OF BORING

· 44.		•						Bonng									2.100(11011
Projec	t:T R	rinit d)	y Ap	part	ments - Site 1	(Mull	an	Rig: Mobile B-61 Hammer: Auto	Boring Location Coordinates	on N: E:	46.88 ² -114.0	192 247	76				
Projec	ct Nu	mb	er:					Boring Diameter:	System: Decir	mal D	egrees					τορ	of Borina
117-87	7510	01						8 in	Datum: NAD	83						Elev	vation: 100.2 ft
Date S	Start	ed.			Date Finishe	d:		Drilling Fluid	Abandonment	t Meth	nod:						
0 6/1/20	, ui t				6/1/20	~ .		None	Backfilled with	n Cutti	ings						
		Kar	fo		0/1/20						5						
	. U	n.ee		~				- Refer to	ыте мар								
	er: Ji	mΡ	lerc	e													
Depth (ft)	tion	Type	ery (%)	(%)	Count	logy		Madavial Da			Depth (ft)				(9)		Remarks
	era	ble	o ve	B	N N	L the		Material Des	cription		Flov	8			ိ		and Other Tests
(ft)	ð	max	Sec	2	Blo						(ft)	N N	H	2	50	8	Other rests
			<u> </u>								. ,	_	_	_		_	
		\mathbb{N}	80		3-2-2	<u>×17</u>	ТС	OPSOIL, slightly moi	st.		0.7						
≥	1	\square					Sa	andy, Silty CLAY (CL	ML), soft, sligh	ntly	99.5						
							m	oist, dark brown, fine	grained sand.								
4 1-		\vdash					Pr	orly-Graded CRAVE	- with sand (CI	P)	2.5						
	1	IX.	33		4-7-11	$\cdot \bullet$	m	edium dense to verv	dense, slightly	•),	97.7						
	1	\vdash				6	m	pist to wet, brown to	gray, fine to								
5		7	,			171	со	arse grained, subrou	inded.			2					
₹ <u>95</u> .2	11	IX.	53		32 - 34 - 37												
ř. –	┤╏	\vdash															
L																	
	1	Ļ,										1					
<u> </u>	1	$ \vee $	60		9-15-38	.•						1					
	11																
$\frac{10}{902}$	┤╏	\boxtimes	100		22 - 50/0.3ft												
30.2																	
Ę –																	
È -	┤┨					•											
						•••											
15		\setminus	1		10 01 01							4					
85.2		$ \lambda $	73		18-31-31												
<u> </u>	1		1														
						.•				, (
5										¥							
	1					6											
3	↓ B																
20		\vdash															
80.2	1	X	53		11 - 11 - 13												
		\vdash				•											
2.4																	
	1					•••											
	╡┣																
25	-	$ \vee $	52		7 - 12 - 18												
15.2		\square				.•					26 0						
	-						В	oring Depth: 26.0 ft,	Elevation: 74.2	2 ft	74.2						
								-									
-																	
2																	
<u>.</u>																	
		Wate	er L	.evel	Observations	7	ZDr	iring illing: 17.5 ft <i>(</i> 82.7 <i>ft</i>)		Rem	arks:						
After		+ D-		a		1		ter		1							
_ <u>⊢</u> ≚_ Drillin	ig: No	ι кес	corde	a		-	± D	TIIIng: NOT Recorded		1							

Figure No. 13 LOG OF BORING Boring BH-13

								Boning									
Projec	t: T R	rinit d)	y Ap	part	ments - Site 1	(Mull	an	Rig: Mobile B-61 Hammer: Auto	Boring Location Coordinates	on N: E:	46.882 -114.0	201 243	3				
Projec	:t Nı	ımb	er:					Boring Diameter:	System: Decir	mal D	egrees					Тор	of Boring
117-87	7510	01						8 in	Datum: NAD8	83						Elev	vation: 100.6 ft
Date	tart	eq.			Date Finisho	d٠		Drilling Fluid:	Abandonment	t Meth	nod:						
	lait	cu.				u.		Nono	Backfilled with	n Cutti	inas						
		Kac	fo		0/2/20												
	. 0		ie.	_				Location. Refer to	Site Map								
	er: Ji	mΡ	ierc	e													
Depth (ft)	ation	e Type	'ery (%)	D (%)	Count	ology		Material Des	cription		Depth (ft)	(%			(%)		Remarks and
Elev.	Oper	amp	Seco	g	Blow	Lith					Elev. (ft)	MC (Е	2	-200	8	Other Tests
		v N 7	ш.			A A A	ТС	OPSOIL, slightly moi	st.	Г	0.3	╞	-	-	-	_	
		\mid	93		7-9-5		Cla slig	ayey SAND (SC), m ghtly moist, dark bro	edium dense, wn, fine grained	/ I,	100.3						
	}	X	53		5 - 16 - 21		su Pc	brounded. porly-Graded GRAVE	EL with sand (GF	P),	2.8 97.8						
			75		16 - 31 - 50/0.2ft		we gra	et, brown to gray, fin ained, subrounded to	e to coarse o subangular, cla	ay		1					
0.08 		\square					fin be	es from 14.5-15.5 ft, low water table, grav ttings	coarse sand lei vels to 2" in augo	ns er							
			67		15 - 34 - 50		u										
		$\left \right\rangle$										3					
90.6 -		\mid	80		28 - 40 - 50												
нан Таранан Таранан																	
15 85.6		\mathbb{X}	80		17 - 18 - 17							6					
										<u> </u>							
20 80.6		\mid	73		7 - 8 - 50/0.1ft	; b ;											
25	1	$\left \right\rangle$	47		28 - 20 - 18												
		arepsilon				6	В	oring Depth: 25.8 ft.	Elevation: 74.8	3 ft	25.8						
								<u> </u>			<u> </u>						
						1				1							
Δfter		Wate	ər L	.evel	Observations	7	⊻ Dr	illing: 17.8 ft <i>(82.8 ft)</i> iter		Rem	arks:						
	ig: No	t Rec	orde	d		-		rilling: Not Recorded									

2525 Palmer Street, Suite 2 Missoula, MT 59808 Phone: (406) 543-3045

Figure No. 14 LOG OF BORING

_	Fax: (406) 54,	3-30	88				Boring	BH-14								Sheet 1 of 1
	Projec	t:T R	rinit (d)	y Ap	oart	ments - Site	1 (Mul	lan	Rig: Mobile B-61 Hammer: Auto	Boring Locatio	on N: F:	46.881	91 251					
	Projec	t Nı	imb	er:					Boring Diameter:	System: Decir	nal D	egrees					Ton	of Boring
	117-87	7510	001						8 in	Datum: NAD8	33	-					Elev	vation: 99.5 ft
2	Date S	tart	ed:			Date Finishe	d:		Drilling Fluid:	Abandonment	t Meth	nod:						
D.GF	6/2/20					6/2/20			None	Backfilled with	Cutt	ings						
ROA	Driller	: 0	Kee	efe		0,2,20			Location: Refer to	Site Map								
LAN	Logge	r: Ji	m P	ierc	е					p								
MUL																		
- SB	Depth	E	ğ	(%)	(%	nut	ß					Depth						Pomarke
D LO	(14)	ratio	e T	very	0	ő	olo		Material Des	cription		(14)	(%			%)		and
RINC	Elev.	8 0	dung	eco	a a	Slow	Ē					Elev.	<u> </u>	ب	<u>ب</u>	8	0	Other Tests
SBO	(11)		w	Ř		ш						(11)	2		Δ.	·7		
ENT								ТС	PSOIL, slightly mois	st.		0.5						
RTM		1						Sa	ndy, Silty CLAY (CL	-ML), medium		99.0						
APA			\bigtriangledown	52		6-11-10		Su	attered gravels.	plasticity,	ſ	2.0	5					
Σ		Ь	\square	55			•	Po	orly-Graded GRAVE	L with sand (GF	P),	97.5						
\TRI								me	dium dense to very	dense, slightly								
SITE	5		K 7			40 50/0 45	•	mc co:	arse grained subrou	gray, tine to inded to angular	r.							
DAD	94.5		M	33		13 - 50/0.4tt		cla	y fines below 14 ft, r	multi-colored,	• •							
N R(]				gra	avels to 1-1/2" in aug	er cuttings ,	c 1							
∩LLA		Ь						CO	arse sand and fine g	ravel below 191	π.							
S/MI			\bigtriangledown	13		47 - 50/0.3ft												
°0			\square															
LAB		1					. • •						3					
VTS/	10 89.5		IX.	60		25 - 28 - 30							ľ					
LME		Ь	\vdash															
PAR ⁻							•											
Ν																		
RINI-		1																
20/T																		
RT 20	_ 15	Ь	\mathbb{N}	100		12 - 14 - 12												
POF	84.5		$\mid \! $															
S\R							•••											
ORT		1																
/REF							.•1				¥							
ECH		Ь					•											
EOI	20		\bigtriangledown			7-12-12												
9/:z	79.5		\square	90		r 12 - 12	•					20.8						
2:39								В	oring Depth: 20.8 ft,	Elevation: 78.7	ft	78.7						
20 1:																		
7/01,																		
T-0																		
Ъ.																		
2009																		
EVIS																		
T_R																		
- MD																		
SING																		
BQF																		
ЧО́С			Wate	er L	.evel	Observations			ring		Rem	arks:						
ЙГ	After							<u> →</u> Dri T Af	ling: 17.9π (87.6π) ter									
ΠĿ	≚ Drillin	g: No	t Rec	corde	d		-	T Dr	illina: Not Recorded		1							

Figure No. 15 LOG OF BORING

	Fax: (406) 543	3-30	88				Boring	BH-15								Sheet 1 of 1
	Projec	:t: T	rinit	y Ap	bart	ments - Site 1	(Mu	llan	Rig: Mobile B-61	Boring Locatio	n N:	46.881	83					
	Droioc	- 	(d) umb	or:					Hammer: Auto	Coordinates	E:	<u>-114.0</u>	256	55				
	117-8	7510) 01						8 in	Datum: NAD8	1ai D 3	eyrees					Top	o of Boring
_	Date S	1010				Doto Finicho	d.		Drilling Eluid	Abandonment	Meth	nod:					LIE	valion. 99.0 ft
O.GP,	Date 2	Start	eu:			6/2/20	u:		None	Backfilled with	Cutti	ngs						
ROAL	Driller	: 0	'Kee	fe		0/2/20			Location: Refer to	Site Man								
AN F	Logge	er: Ji	m P	ierc	е													
LOGS - MULI	Depth (ft)	ation	e Type	ery (%)	(%) c	Count	ology		Material Des	cription		Depth (ft)	()			%)		Remarks
FS BORING	Elev. (ft)	Oper	Sample	Recov	RQI	Blow	Lith					Elev. (ft)	MC (%	E	Ч	-200 (8	Other Tests
ARTMENT		ł	X	130		9-20		FIL G	L, Poorly-Graded G), medium dense, s	it. RAVEL with san lightly moist,	nd	0.5 99.3 1.0						
RINITY AF				60		12 - 17 - 18		gra Sa mo	ay, fine to medium gr indy, Silty CLAY (CL pist. dark brown, low	ained, angular. ·ML), slightly plasticity.		98.8 1.5 98.3	2					
DAD SITE/T	 _ 5 _ 94.8		$\overline{\mathbb{N}}$	67		6-9-18		Po	orly-Graded GRAVE nse to very dense, slav, fine to coarse gra	L with sand (GP ightly moist,	2),		2					
ULLAN RC								to cu	subangular, gravels ttings.	to 1-1/2" in auge	er							Installed solid PVC to
B_LOGS\M			X	87		12 - 34 - 50						بر 9.0						9 feet for future infiltration testing.
LS\LA								E	Boring Depth: 9.0 ft,	Elevation: 90.8 i	ft	90.8						
APARTMEI																		
\TRINITY /																		
ORT 2020																		
PORTS\REF																		
TECHIREF																		
9 - N:\GEC																		
01/20 12:3																		
+.GDT - 07/																		
SED_2009-																		
ADT_REVI:																		
3ORING - N																		
3 OF E			Wate	ar L	evel	Observations			ring		Rema	arks:						
TT LOC	After Tilling: Not Recorded								ter illing: Not Encountered illing: Not Recorded									

Figure No. 16 LOG OF BORING

	Τάλ. (400	54	5-50	000				воппу	БП-10								Sheet I OI I
	Projec	:t: T R	rinit d)	y Ap	part	ments - Site 1	(Mu	llan	Rig: Mobile B-61 Hammer: Auto	Boring Locatio	on N: E:	46.881 -114.0	174 253	84				
	Projec	t Nu	ımb	er:					Boring Diameter:	System: Decir	mal D	egrees					Ton	of Boring
	117-87	7510	01						8 in	Datum: NAD	83						Elev	vation: 100.8 ft
-	Date S	tart	ed.			Date Finishe	٩.		Drilling Fluid:	Abandonment	t Meth	nod:						
GP.	6/2/20	, cui t				6/2/20	u.		None	Backfilled with	n Cutti	ngs						
ROAL	Driller	: 0	Kee	efe		0/2/20			Location: Pofor to	Site Man		•						
AN F	Logge	r:Ji	m P	lierc	e					Sile Map								
IULL	33-				-								1					
S - N	Depth		e	(%)		I	_					Depth						
LOG	(ft)	tio	ž	ery	8	Col	log		Matorial Doc	cription		(ft)				(%		Remarks
ВN	Elev.	pera	ble	No.	ğ	MO	ithc		Waterial Des	cription		Elev.	6			õ	_	Other Tests
BOR	(ft)	σ	Sal	Rec	"	ä	-					(ft)	Σ	1	Ъ	Ŗ		
UTS I			k 7				<u>st 1</u> 2' .	т	PSOIL slightly moi	st to very moist		0.5			_			
MEN		ľ	XI	120		5-6-6		Sa	andy, Silty CLAY (CI	-ML), soft, slight	tlv	100.3						
ART		Ь	\vdash					m	pist to very moist, da	rk brown, low	y							
ΥAΡ								pla	asticity, fine sand.				10					
ĹΝ			\mathbb{N}	60		2-1-2							19					
E\TR			\square															
SITE	5		$ \downarrow $															
DAD	95.8	1	XI	67		1 - 1 - 10		Do		L with cond (CI	D)	5.3						
N R(ľ	\vdash					me	edium dense to verv	dense, slightly	г <i>)</i> ,	95.5						
JLLA		L						m	pist to wet, gray to re	ed, fine to coars	e							
S/ML			$ \leftarrow 7 $					gra	ained, subrounded to	subangular,			2					
00		b	X	69		12 - 24 - 50/0.3ft	2.5	gra	avels to 1-1/2" in aug	er cuttings,								
AB_L			\vdash	1			.•	be	low water table.	lavel lenses								
LS/L	_ 10 _		$\overline{\nabla}$	1		07 04 06												
JEN	90.8	1	M	87		21-34-30												
ARTN		ľ		1														
AP/		l					-											
ΥTN																		
\TRI																		
2020							.•	(
ORT	85.8		IX.	33		32 - 25 - 23												
REPC		1	\square															
TS/F							•											
POR		L																
1/RE											<u> </u>							
TECH																		
.OEC	_ 20		Κ7			5 0 11												
- N:/	80.8		M	60		5-6-11						21.0						
2:39			·`		•			В	oring Depth: 21.0 ft,	Elevation: 79.8	3 ft	<u>79.8</u>	•					
20 1.																		
7/01/																		
L - 0																		
GD																		
+600																		
D_2																		
VISE																		
"R																		
MDT																		
- ⁵ N																		
ORI																		
OF B								P	rina									
900	A4-		Wate	er L	.evel	Observations		⊻pr	illing: 18.0 ft (82.8 ft)		Rema	arks:						
Έ	After Drillin	a. No	t Ror	ordo	Ч				ter tilling: Not Pocordod									

Figure No. 17 LOG OF BORING

	Fax: (406) 543-3088								Boring	BH-17								Sheet 1 of 1
	Projec	:t: T	rinit	y Ap	artı	ments - Site 1	(Mul	lan	Rig: Mobile B-61 Boring Location N: 46.88174									
		F	(d						Hammer: Auto	Coordinates	E: -114	.02	42	6				
	Projec	t Nu	umb	er:					Boring Diameter:	System: Decin	nal Degre	es					Тор	o of Boring
	117-8	751	001						8 in Datum: NAD83				Elev	vation: 101.0 ft				
Ъ	Date S	Start	ed:			Date Finishe	d:		Drilling Fluid:	Abandonment	Method:							
AD.G	6/1/20					6/1/20			None	Backfilled with	Cuttings							
I RO	Driller	: 0	'Kee	efe					Location: Refer to	Site Map								
LLAN	Logge	er:Ji	mΡ	ierc	е													
RING LOGS - MU	ithology						Lithology		Material Description		Dep (ft)	th	c (%)		_1	(%) 00	0	Remarks and Other Tests
S BOF	(ft)		ଷ୍ପ	Å		B				(ft)		Σ	-	ਙ	ų	ā		
ENTS								TC	DPSOIL, slightly mois	st.								
RTME		1		00		5-0-0		Sa	andy, Silty CLAY (CL	-ML), medium st	1.0							
INITY APAF				67		3-1-7		to pla	stiff, slightly moist, d asticity, fine sand.	ark brown, low	100.		16					
E\TR		1	Д							I with cond (CC	4.0							
ROAD SIT	5 		\square	53		7 - 8 - 10		me	edium dense to very pist, brown to gray, s	dense, slightly ubrounded.	-), 97.0		3					
-LAN		1					•											
-OGS\MUI]_┹		60		17 - 29 - 37												Installed solid PVC to 9 feet for future infiltration testing.
AB_L								F	Roring Denth: 9.0 ft	Elevation: 92.0	ft 9.0	ىلى						_
3 - MDT_REVISED_2009+.GDT - 07/01/20 12:39 - N:\GEOTECH\REPORTS\REPORT 2020\TRINITY APARTME																		
F BOR																		
0 90			Wate	ar L	evel	Observations		∑ Du Dri	illing: Not Encountered		Remarks:							
	After Trilling: Not Recorded							▼ Af	iter rilling: Not Recorded									

Figure No. 18 LOG OF BORING

_	uni (,	•						Doning									
F	Projec	t: T R	rinit d)	y Ap	oarti	ments - Site 1	(Mull	an	Rig: Mobile B-61Boring LocationN: 46.88156Hammer: AutoCoordinatesE: -114.02491									
F	Projec	t Nu	mb	er:					Boring Diameter:	System: Decir	nal D	egrees					Ton	of Boring
1	17-87	7510	01						8 in	Datum: NAD8	33						Elev	/ation: 100.3 ft
₋ҍ)ato 9	tart	he			Data Finisha	٩٠		Drilling Eluid:	Abandonment	Meth	nod:						
d C	10/00	ant					u .		Nono	Backfilled with	Cutti	ings						
OAD)rillor	· ^'	Kar	afe		0/2/20				Cite Maria		5.						
₽ ₽		. U m lin	n P	ierc	ē				Location. Refer to	Sile iviap								
	ogge	1.01				1							-	_	_			
NG LOGS - M	Debth (tt) (%) (%) (hology thology								Material Description			Depth (ft) <i>Elev.</i>	(%)			(%) 0		Remarks and Other Tests
IS BOR	(ft)	0	ଞ୍ଚି	Re	_	B						(ft)	ž	Ξ	ᅴ립		Ы	
IENT			\mathbb{N}	87		7-9-15	<u>11/</u>	T	OPSOIL, slightly mois	st.		0.8						
Sandy, Silty CLAY (CL-ML), slightly moist, dark brown, low plasticity, fine sand										ſ	99.5							
										plasticity, line		99.1	2					
Ĕ	-		X	60		13 - 18 - 14		P	oorly-Graded GRAVE	L with sand (GF	P),		[
TRI			\vdash				•	m	edium dense to very	dense, slightly	,.							
SITE	5		\vdash					m	oist to wet, gray to re	ed, fine to coars	е							
- de	95.3	1	X	60		7 - 10 - 19		gr	ameu, subrounded to avels to 2" in auger o	uttings_medium	n							
Z RC	-		\vdash					gr	ained sand and fine	grained gravel	•							
ILLA	_							Ďe	elow water table.									
S/MU				78		20 - 50/0.4ft							2					
000	-		\mapsto	10														
AB_	-						•											
LS/L	10		\mathbb{N}	67		27 - 37 - 32	•											
AENT	90.3		\square	0/														
RTM -	-																	
APA	_	1					.•1											
Ľ	_																	
TRIN																		
020	-												5					
RT 2	15 85 3		X	67		19-23-17							ľ					
EPO			\vdash															
SNR																		
OR	-	1					.•1				∇							
-REF	-										<u> </u>							
ECH	_																	
EOT	20		\backslash			0 11 10												
N:/G	80.3 X 53 6-11-12											20.0						
:39 -		·	<u> </u>					E	Boring Depth: 20.8 ft,	Elevation: 79.5	5 ft	79.5	•			<u> </u>		
0 12:																		
01/2																		
- 07/																		
105																		
0+60																		
20(
ISED																		
REV																		
10																		
≥ '																		
RINC																		
BO																		
้ อีย			Wate	ər L	.evel	Observations	7	ZD	uring rilling: 176 ft (82 7 ft)		Rem	arks:						
٩ ٦	After								fter									
ΕĽ	– Drillin	g: No	t Rec	corde	d		-	<u>¥</u> D	rilling: Not Recorded									

2525 Palmer Street, Suite 2 Missoula, MT 59808 Phone: (406) 543-3045

Figure No. 19 LOG OF BORING

	Fax: (406) 543	8-30	88				Boring	BH-19								Sheet 1 of 1	
	Projec	t:T F	rinity (d)	y Ap	oart	ments - Site 1	(Mu	lan	Rig: Mobile B-61Boring Location N: 46.88144Hammer: AutoCoordinatesE: -114.02516										
	Projec	t Nu	imbe	er:					Boring Diameter:	System: Decin	nal D	egrees					Top of Boring		
	117-87	7510	001						8 in Datum: NAD83 El				Elevation: 102.0 ft						
GPJ.	Date S	start	ed:			Date Finishe	d:		Drilling Fluid:	Backfilled with	Cutti	ings							
ROAL	Driller	: 0	Kee	fe		0/2/20			Location: Refer to	Site Map									
LLAN	Logge	e r: Ji	m Pi	ierc	е					•									
S BORING LOGS - MU	(i) The second second second second second second (%) Rando (%) RQD (%) Blow Count Lithology					Blow Count	Material Des	cription		Depth (ft) <i>Elev.</i> <i>(ft)</i>	MC (%)	L	PL	-200 (%)	DD	Remarks and Other Tests			
PARTMENT:			X	73		13 - 18 - 25		As BA GF	phalt. SE COURSE, Poorl RAVEL with sand (GI	y-Graded P), dense, slight		0.3 101.7 1.7							
E\TRINITY A			X	73		22 - 35 - 34		no su Po sa	bist, brown, medium bangular, 3/4-inch gr orly-Graded GRAVE	grained, avel. L with clay and use to medium		100.5	3						
JLLAN ROAD SIT	5 97.0		X	47		30 - 40 - 35		de me 1-1	nse, slightly moist, g edium grained, subro 1/2" in auger cuttings	gray, fine to unded, gravels	to		2						
LOGS/ML			X	40		17 - 14 - 12						8.7							
S\LAB_									Boring Depth: 8.7 ft,	Elevation: 93.3	ft	93.3							
09+.GDT - 07/01/20 12:39 - N:\GEOTECH\REPORTS\REPORT 2020\TRINITY APARTI																			
ORING - MDT_REVISED_20																			
OFB			W/oto	r 1	01/01	Observations		Du	ring		Rem	arks [.]							
1 LOG	After V Drilling: Not Recorded							<u>≚ Dri</u> ▼ Afr	illing: Not Encountered ter illing: Not Recorded										

APPENDIX C

Laboratory Testing (Figures 20 through 26)

TRINITY APARTMENTS BORING LOGS - MULLAN ROAD.GPJ、07-02-20、、TT_US GRAIN SIZE (SIEVE DATA)

Revised 1-23-08 (MAT)

TRINITY APARTMENTS BORING LOGS - MULLAN ROAD.GPJ、07-02-20、、TT_US GRAIN SIZE (SIEVE DATA)

PROJECT:Trinity Apartments - Site 1 (Mullan Rd)LOCATION:BH-5MATERIAL:Sandy, Silty Clay (CL-ML)SAMPLE SOURCE:0.5 - 4.0 ftREVIEWED BY:AW

 PROJECT NO:
 117-8751001

 WORK ORDER NO:
 1

 LAB NO:
 1

 DATE SAMPLED:
 5/28/2020

CBR(CALIFORNIA BEARING RATIO) OF LABORATORY-COMPACTED SOILS(ASTM D1883)

FIGURE 26

APPENDIX D

Infiltration Testing Results

Project Name:	Trinity Apartr	ments - Site 1 (Mullan Road)	Tetra Tech Project No.:	117-8751001
Test Location:	BH-5		Soak Period Begin:	9:36 AM; June 4, 2020
Hole Depth to Existing	g Ground:	9'	Test Begin:	3:39 PM; June 4, 2020
Hole Depth to Referne	nce Point:	9' 9.5"	Tested By:	J. Pierce

			Time Interval	Initial Distance Below	Final Distance Below	Drop in Water	Infiltration
Trial No.	Start Time	End Time	(min)	Reference Point (in)	Reference Point (in)	Level (inches)	Rate (in/hr)
1	3:39 PM	3:50 PM	11	88.125	88.250	0.125	0.68
1	3:50 PM	4:00 PM	10	88.250	88.375	0.125	0.75
1	4:00 PM	4:10 PM	10	88.375	88.500	0.125	0.75
1	4:10 PM	4:20 PM	10	88.500	88.625	0.125	0.75
1	4:20 PM	4:30 PM	10	88.625	88.750	0.125	0.75
1	4:30 PM	4:40 PM	10	88.750	89.000	0.250	1.50
1	4:40 PM	4:50 PM	10	89.000	89.250	0.250	1.50
2	4:50 PM	5:01 PM	11	89.250	89.250	0.000	0.00
2	5:01 PM	5:10 PM	9	89.250	89.500	0.250	1.67
2	5:10 PM	5:20 PM	10	89.500	89.625	0.125	0.75
2	5:20 PM	5:30 PM	10	89.625	89.875	0.250	1.50
2	5:30 PM	5:40 PM	10	89.875	90.250	0.375	2.25
2	5:40 PM	5:50 PM	10	90.250	90.250	0.000	0.00
2	5:50 PM	6:00 PM	10	90.250	90.500	0.250	1.50
3	6:00 PM	6:11 PM	11	90.500	90.500	0.000	0.00
3	6:11 PM	6:21 PM	10	90.500	90.625	0.125	0.75
3	6:21 PM	6:31 PM	10	90.625	90.625	0.000	0.00
3	6:31 PM	6:41 PM	10	90.625	90.750	0.125	0.75
3	6:41 PM	6:50 PM	9	90.750	90.875	0.125	0.83
3	6:50 PM	7:00 PM	10	90.875	91.000	0.125	0.75
3	7:00 PM	7:10 PM	10	91.000	91.125	0.125	0.75

Measured Infiltration Rate (Average Rate of Last Trial): 0.54

Project Name:	Trinity Apartr	nents - Site 1 (Mullan Road)	Tetra Tech Project No.:	117-8751001
Test Location:	BH-9		Soak Period Begin:	9:44 AM; June 4, 2020
Hole Depth to Existing	g Ground:	9'	Test Begin:	3:42 PM; June 4, 2020
Hole Depth to Referne	nce Point:	9' 10"	Tested By:	J. Pierce

			Time Interval	Initial Distance Below	Final Distance Below	Drop in Water	Infiltration
Trial No.	Start Time	End Time	(min)	Reference Point (in)	Reference Point (in)	Level (inches)	Rate (in/hr)
1	3:42 PM	3:53 PM	11	89.125	89.375	0.250	1.36
1	3:53 PM	4:03 PM	10	89.375	89.500	0.125	0.75
1	4:03 PM	4:13 PM	10	89.500	89.500	0.000	0.00
1	4:13 PM	4:22 PM	9	89.500	89.500	0.000	0.00
1	4:22 PM	4:32 PM	10	89.500	89.500	0.000	0.00
1	4:32 PM	4:42 PM	10	89.500	89.625	0.125	0.75
1	4:42 PM	4:52 PM	10	89.625	89.625	0.000	0.00
•			10	~~~~	~~ ==~	0.405	
2	4:52 PM	5:02 PM	10	89.625	89.750	0.125	0.75
2	5:02 PM	5:12 PM	10	89.750	90.000	0.250	1.50
2	5:12 PM	5:23 PM	10	90.000	90.000	0.000	0.00
2	5:23 PM	5:33 PM	10	90.000	90.125	0.125	0.75
2	5:33 PM	5:42 PM	9	90.125	90.375	0.250	1.67
2	5:42 PM	5:52 PM	10	90.375	90.375	0.000	0.00
2	5:52 PM	6:02 PM	10	90.375	90.625	0.250	1.50
3	6:02 PM	6:12 PM	10	90.625	90.750	0.125	0.75
3	6:12 PM	6:22 PM	10	90.750	90.750	0.000	0.00
3	6:22 PM	6:32 PM	10	90.750	90.875	0.125	0.75
3	6:32 PM	6:42 PM	10	90.875	91.125	0.250	1.50
3	6:42 PM	6:52 PM	10	91.125	91.250	0.125	0.75
3	6:52 PM	7:02 PM	10	91.250	91.375	0.125	0.75
3	7:02 PM	7:13 PM	11	91.375	91.500	0.125	0.68

Measured Infiltration Rate (Average Rate of Last Trial): 0.74

Project Name:	Trinity Apartr	nents - Site 1 (Mullan Road)	Tetra Tech Project No.:	117-8751001
Test Location:	BH-15		Soak Period Begin:	10:10 AM; June 4, 2020
Hole Depth to Existing	g Ground:	9'	Test Begin:	3:46 PM; June 4, 2020
Hole Depth to Referne	nce Point:	9' 10.5"	Tested By:	J. Pierce

			Time Interval	Initial Distance Below	Final Distance Below	Drop in Water	Infiltration
Trial No.	Start Time	End Time	(min)	Reference Point (in)	Reference Point (in)	Level (inches)	Rate (in/hr)
1	3:46 PM	3:56 PM	10	93.750	94.250	0.500	3.00
1	3:56 PM	4:07 PM	11	94.250	95.125	0.875	4.77
1	4:07 PM	4:17 PM	10	95.125	96.125	1.000	6.00
1	4:17 PM	4:27 PM	10	96.125	96.750	0.625	3.75
1	4:27 PM	4:37 PM	10	96.750	97.625	0.875	5.25
1	4:37 PM	4:47 PM	10	97.625	98.375	0.750	4.50
1	4:47 PM	4:57 PM	10	98.375	98.875	0.500	3.00
2	4:59 PM	5:09 PM	10	93.000	93.750	0.750	4.50
2	5:09 PM	5:19 PM	10	93.750	94.750	1.000	6.00
2	5:19 PM	5:28 PM	9	94.750	95.375	0.625	4.17
2	5:28 PM	5:38 PM	10	95.375	96.000	0.625	3.75
2	5:38 PM	5:48 PM	10	96.000	96.750	0.750	4.50
2	5:48 PM	5:58 PM	10	96.750	97.250	0.500	3.00
3	6:08 PM	6:18 PM	10	91.875	92.625	0.750	4.50
3	6:18 PM	6:28 PM	10	92.625	93.375	0.750	4.50
3	6:28 PM	6:38 PM	10	93.375	94.250	0.875	5.25
3	6:38 PM	6:48 PM	10	94.250	94.500	0.250	1.50
3	6:48 PM	6:58 PM	10	94.500	95.500	1.000	6.00
3	6:58 PM	7:08 PM	10	95.500	96.125	0.625	3.75
				Measured In	nfiltration Rate (Average I	Rate of Last Trial):	4.25

Project Name:	Trinity Apartr	nents - Site 1 (Mullan Road)	Tetra Tech Project No.:	117-8751001
Test Location:	BH-17		Soak Period Begin:	10:04 AM; June 4, 2020
Hole Depth to Existing	g Ground:	9'	Test Begin:	2:04 PM; June 4, 2020
Hole Depth to Referne	nce Point:	9' 11"	Tested By:	J. Pierce

			Time Interval	Initial Distance Below	Final Distance Below	Drop in Water	Infiltration
Trial No.	Start Time	End Time	(min)	Reference Point (in)	Reference Point (in)	Level (inches)	Rate (in/hr)
1	2:04 PM	2:07 PM	3	90.000	103.750	13.750	275.00
1	2:07 PM	2:10 PM	3	103.750	107.750	4.000	80.00
1	2:10 PM	2:13 PM	3	107.750	110.125	2.375	47.50
1	2:13 PM	2:16 PM	3	110.125	112.250	2.125	42.50
1	2:16 PM	2:19 PM	3	112.250	113.500	1.250	25.00
1	2:19 PM	2:22 PM	3	113.500	114.500	1.000	20.00
1	2:22 PM	2:25 PM	3	114.500	115.500	1.000	20.00
1	2:25 PM	2:28 PM	3	115.500	116.250	0.750	15.00
1	2:28 PM	2:31 PM	3	116.250	117.000	0.750	15.00
1	2:31 PM	2:34 PM	3	117.000	117.375	0.375	7.50
2	3:21 PM	3:36 PM	15	90.500	114.875	24.375	97.50
2	3:36 PM	3:49 PM	13	114.875	118.375	3.500	16.15
3	5:05 PM	5:13 PM	8	87.875	111.125	23.250	174.38
3	5:13 PM	5:25 PM	12	111.125	115.625	4.500	22.50
3	5:25 PM	5:34 PM	9	115.625	117.250	1.625	10.83
3	5:34 PM	5:43 PM	9	117.250	118.125	0.875	5.83
3	5:43 PM	5:54 PM	11	118.125	119.000	0.875	4.77
4	5:57 PM	6:03 PM	6	87.125	110.625	23.500	235.00
4	6:03 PM	6:14 PM	11	110.625	116.250	5.625	30.68
4	6:14 PM	6:25 PM	11	116.250	118.750	2.500	13.64

Measured Infiltration Rate (Average Rate of Last Trial): 67.77

