MCNETT FLATS SUBDIVISION

Major Subdivision Application

Section 9: Traffic Impact Study

Revision

1st Element Review Copy 1st Sufficiency Review Copy 2nd Sufficiency Review Copy Governing Body Review Date August 25, 2020 September 1, 2020 October 16, 2020 December 4, 2020

405 Third Street NW, Suite 206 Great Falls, MT 59404 (406) 761-1955 WOITH ENGINEERING, INC. ENGINEERS & SURVEYORS

3860 O'Leary Street, Suite A Missoula, MT 59808 (406) 203-0869

Mcnett Flats Subdivision Traffic Impact Study UPDATE

Missoula, Montana

Prepared For:

Woith Engineering, Inc. 3860 O'Leary Street, Suite A Missoula, MT 59808

October, 2020

130 South Howie Street Helena, Montana 59601 406-459-1443

Table of Contents

Α.	Executive Summary	1
В.	Project Description	1
C.	Existing Conditions	1
	Adjacent Roadways	1
	Traffic Data	3
	Additional Projects	3
	Historic Traffic Data	3
	Missoula Signal Warrant Study and LRTP	4
	Level of Service	4
D.	Proposed Development	6
E.	Trip Generation and Assignment	6
F.	Trip Distribution	9
G.	Traffic Impacts Outside of the Development	9
Η.	Impact Summary & Recommendations	13

List of Figures

Figure 1 – Proposed Development Site	2
Figure 2 – Proposed Development	7
Figure 3 – Trip Distribution	9

List of Tables

APPENDX A – TRAFFIC DATA APPENDIX B – TRAFFIC MODEL APPENDIX C – LOS CALCULATIONS APPENDIX D – TURN-LANE WARRANTS

Mcnett Flats Subdivision Traffic Impact Study – 2020 Update

Missoula, Montana

A. EXECUTIVE SUMMARY

The Mcnett Flats Subdivision is a 20-acre mixed-use project proposed north of Mullan Road at the north end of George Elmer Drive in Missoula, Montana. Upon completion in 2022, the development may contain up to 660 living units if the maximum density permitted by the proposed zoning were realized, and could produce up to a maximum of 3,600 new daily vehicle trips in this area. As proposed, the Mcnett Flats Subdivision will increase traffic volumes on the surrounding road network and roadway improvements may be warranted with this project and the other planned developments in this area. The approval and design of a traffic signal for the intersection of George Elmer Drive and Mullan Road is currently underway to meet the current traffic demands for future traffic volume growth. The developers should contribute to the installation of a roundabout at the intersection of Cattle Drive and George Elmer Drive.

B. PROJECT DESCRIPTION

This document studies the possible effects on the surrounding road system from the proposed Mcnett Flats Subdivision located at the north end of George Elmer Drive in Missoula. The document provides information regarding possible traffic impacts in the area and identifies mitigation efforts that the development may require. The project could include up to 660 residential units at full development. The City of Missoula has requested an analysis of George Elmer Drive and Chuck Wagon Drive intersecting with Mullan Road to the south, plus the intersection of George Elmer Drive and Cattle Drive.

C. EXISTING CONDITIONS

The Mcnett Flats Subdivision is proposed on a 20-acre parcel of land located at the northern end of George Elmer Drive. The site is located in a residential area north of Mullan Road. The 44 Ranch subdivision is located just south of the property and the Flynn Ranch subdivision is located to the east. See **Figure 1** for a location map of the proposed development.

Adjacent Roadways

Mullan Road (MT 263) is an east/west minor arterial route that extends through the western portion of Missoula. This section of the roadway has a two-lane cross-section with additional deceleration lanes at some intersections. The road has a rural cross-section with a paved width of 40 feet. The Mullan Road pedestrian trial is located to the north of the roadway and runs

from Mullan Trail to Flynn Lane. The posted speed limit is 45 MPH. According to traffic counts conducted by the Montana Department of Transportation (MDT) in 2019, the roadway currently carries 13,000 Vehicles per Day (VPD).

Figure 1- Proposed Development Site

George Elmer Drive a north/south local route that extends north from Mullan Road. The road provides access to the 44 Ranch Subdivision and the Flynn Ranch Subdivision. The road has a paved width of 32 feet with bike lanes. At the intersection with Mullan Road, George Elmer Drive widens to include separated right and left-turn lanes for southbound traffic. The intersection also has a right-turn deceleration lane for westbound traffic on Mullan Road. The posted speed limit on George Elmer Drive is 45 MPH. Traffic data collected by Abelin Traffic Services (ATS) indicates that the road currently carries 1,700 VPD Vehicles per Day (VPD).

Chuck Wagon Drive is a newly constructed north/south route that provides access to the 44 Ranch Subdivision and 44 Ranch Estates Subdivision. Chuck Wagon Drive was constructed just to the east of Roundup Drive which is now closed except for its connection with Chuck Wagon Drive. Chuck Wagon Drive temporarily connects to Roundup Drive north of Mullan Road. Chuck Wagon Drive has a paved width of 36-feet with bike lanes and a posted speed limit of 30 MPH. Traffic data collected by ATS indicates that the road currently carries 800 VPD Vehicles per Day (VPD).

Traffic Data

In October 2019, ATS collected traffic data at area intersections to evaluate current operational characteristics. These counts included peak-hour turning movement counts and 24-hour volume counts along George Elmer Drive and Chuck Wagon Drive. The peak-hour turning movement counts were performed at the intersections of Mullan Road with George Elmer Drive and Chuck Wagon Drive. The raw traffic data is included in **Appendix A** of this report.

Traffic data was also collected at these intersections in the spring and summer of 2019 by WGM Group for the Heron's Landing project to the south. The original 2019 TIS prepared for the Mcnett Flats Subdivision (George Elmer Tollefson development) used the October 2019 ATS data. This report uses the WGM Group data for the traffic analysis in order to provide more continuity between the traffic analysis for the two projects.

Additional Projects

Construction of the 44 Ranch subdivision is currently underway just to the south of the proposed Remington Flats development. This subdivision currently has 200 homes occupied or platted with an additional 345 homes set to be platted and constructed over the next six years. The subdivision is also accessed from George Elmer Drive and Chuck Wagon Drive.

The Remington Flats Residential Development is currently proposed at the north end of George Elmer Drive and Chuck Wagon Drive. The project would include 152 single-family dwelling units constructed on 20 acres of land. The project would connect into the north side of the 44 Ranch Estates at Riata Road and Chuck Wagon Drive. The Remington Flats Residential Development would be developed in six phases over the next six years and would be expected to be completed in 2026.

The Heron's Landing development is also planned for construction north of Mullan Road between Chuck Wagon Drive and George Elmer drive. This development would include 289 single-family dwelling units and 58 multi-family units. This project is planned for completion in 2030.

The projected traffic from the above-mentioned developments was included in the future traffic projections for this analysis.

Historic Traffic Data

Abelin Traffic Services obtained historic traffic data for Mullan Road from MDT which is presented in **Table 1**. The traffic data history indicates that traffic volumes on this section of Mullan Road increased at an average rate of 1% annually over this time period.

					<u> </u>					
Location	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Mullan Road										
E of Flynn	12,050	12,000	12,280	12,090	12,160	12,320	12,923	14,432	13,941	12,946
#32-3A-313										
Mullan Road W										
of Reserve	19,980	19,410	17,410	16,450	19,600	20,490	17,178	21,963	19,577	19,694
#32-3A-134										

Table 1 – Historic Average Daily Traffic Data

Missoula Signal Warrant Study and LRTP

In June of 2019, WGM group produced a traffic signal warrant study for the intersection of George Elmer Drive and Mullan Road. The study indicated that a traffic signal will be immanently warranted at this location and that the city should begin the design and approval process for the installation of a traffic signal at this location.

The 2017 Missoula Long Range Transportation Plan includes recommendations for improvements to the roadways and pedestrian facilities on the road network within this area. The list of committed and recommended roadway improvement projects includes extending the Mullan Road Trail from Flynn Lane to Reserve Street (Project #475, estimated cost \$775,000). The plan also includes recommendation for the installation of the traffic signal at the intersection of George Elmer Drive and Mullan Road (Project #48, estimated cost \$450,000) on the list of committed and recommended safety projects.

Level of Service

Using the data collected for this project, ATS conducted a Level of Service (LOS) analysis at area intersections. This analysis was conducted in accordance with the procedures outlined in the Transportation Research Board's *Highway Capacity Manual (HCM) - Special Report 209* and the Highway Capacity Software (HCS) version 7.8. Intersections are given a LOS grade of A to F representing the average delay that a vehicle entering an intersection can expect. Typically, a LOS of C or better is considered acceptable for peak-hour conditions. The LOS values for unsignalized and signalized intersections is shown in **Tables 2 and 3**. Note that the LOS criteria for signalized and unsignalized intersections are different. Drivers will typically accept a higher level of total delay in exchange for the guarantee of service through a signalized intersection.

LOS	Average Control Delay (Seconds/Vehicle)
A	0-10
В	>10-15
С	>15-25
D	>25-35
E	>35-50
F	>50

Table 2 - LOS Criteria for Stop-Controlled Intersections

Transportation Research Board Highway Capacity Manual, Special Report #209

LOS	Average Control Delay (Seconds/Vehicle)
А	0-10
В	>10-20
С	>20-35
D	>35-55
E	>55-80
F	>80

Table 3 - LOS Criteria for Signalized Intersections

Transportation Research Board Highway Capacity Manual, Special Report #209

Table 4 shows the existing LOS for the AM, and PM peak hours without the traffic from the proposed development or any additional development. The LOS calculations are included in **Appendix C**. The table shows that the Chuck Wagon Drive intersection with Mullan Road and the intersection of George Elmer Drive and Cattle Drive are currently operating within acceptable limits, but the intersection of George Elmer Drive and Mullan Road is experiencing some operational deficiencies associated with vehicles turning left onto Mullan Road, particularly during the morning peak hour. This issue was identified in the 2017 Missoula Long Range Transportation Plan and a traffic signal was recommended to correct this issue. The June 2019 signal warrant study prepared for this intersection indicated that the signal is immanently warranted and recommended that the design and approval of this signal be initiated. This project is currently underway.

	AM Peak	Hour	PM Peak Hour			
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Mullan Road & Chuck Wagon Drive*	18.4	С	26.1	D		
Mullan Road & George Elmer Drive*	27.4	D	35.4	Е		
George Elmer Drive & Cattle Drive*	8.8/10.0	A/B	8.7/11.5	A/B		

Table 4 – 2019 Level of Service Summary

*Northbound/Southbound or Eastbound/Westbound Side Street LOS and Delay.

D. PROPOSED DEVELOPMENT

The Mcnett Flats Subdivision is currently proposed at the north end of George Elmer Drive. The project may contain up to 660 living units on 20 acres of land if the maximum density permitted by the proposed zoning were realized. The project would connect into the north side of the 44 Ranch at George Elmer Drive and would connect to the Remington Flats Residential Development to the west. The project is expected to be completed in 2022. The proposed development site plan is shown in **Figure 2**.

E. TRIP GENERATION AND ASSIGNMENT

ATS performed a trip generation analysis to determine the anticipated future traffic volumes from the proposed development using the trip generation rates contained in *Trip Generation* (Institute of Transportation Engineers, Tenth Edition). These rates are the national standard and are based on the most current information available to planners. A vehicle "trip" is defined as any trip that either begins or ends at the development site. ATS determined that the critical traffic impacts on the intersections and roadways would occur during the weekday morning and evening peak hours. According to the ITE trip generation rates, at full build-out the Mcnett Flats Subdivision could produce up to 238 AM peak hour trips, 290 PM peak hour trips, and 3,590 daily trips. See **Table 5** for detailed trip generation information

 Table 5 - Trip Generation Rates Mcnett Flats Subdivision

Land Use	Units	AM Peak Hour Trip Ends per Unit	Total AM Peak Hour Trip Ends	PM Peak Hour Trip Ends per Unit	Total PM Peak Hour Trip Ends	Weekday Trip Ends per Unit	Total Weekday Trip Ends
Apartment #221	660	0.36	238	0.44	290	5.44	3,590

Figure 2- Proposed Development

The additional developments planned for this area will contribute almost 8,000 new vehicle trips when the projects are completed in 2030. The anticipated trip generation from these developments is shown in **Table 6**. The traffic from these projects was included in the future growth projections for this analysis.

Land Use	Units	Total AM Peak Hour Trip Ends	Total PM Peak Hour Trip Ends	Total Weekday Trip Ends
Remington Flats	152	112	150	1,435
44 Ranch Estates	345	255	342	3,257
Heron's Landing	347	241	318	3,153
TOTAL	844	608	810	7,845

Table 6 - Trip Generation Additional Developments

The proposed zoning for the Mcnett Flats subdivision is B2-2, which allows for a variety of residential and mixed-use land uses within the subdivision. The proposed B2-2 zoning allows for flexibility in future land uses depending on market needs. The City of Missoula requested an analysis of the potential impacts to the trip generation for the development if a portion of the development was constructed as a mixed-use development according to the B2-2 allowed uses. Without looking at specific potential land uses for each lot, segments of the property can be analyzed using mixed use office park (land use code #750) or business park (land use code #760). These two commercial land uses generate trips at a rate of 149 to 195 daily trips per acre. If half or all of the 20-acre site was developed using these land uses and the number of residential units was decreased accordingly, the total daily trip generation from the development would be in the range of 3,000 to 4,000 vehicle trips per day. This is similar to the projected trip generation of the proposed subdivision.

If the project was developed with a portion mixed-use commercial, the daily vehicle flow patterns would change significantly. Currently this entire area is comprised mainly of residential land uses which creates heavy vehicle flows to the east into Missoula in the morning and back home in the evening. A typical mixed-use business park on the site may produce as many or slightly more vehicle trips than the proposed residential land uses, but the vehicle flow would generally be in the opposite direction of the existing residential traffic flows. Overall, traffic operations in this area would be improved with the inclusion of mixed-uses on the site by decreasing traffic from the heavy residential flow directions and taking advantage of the relatively low flow of traffic entering

the area in the morning and leaving the area in the afternoon. More mixed land-uses would also provide a greater opportunity for traffic to be captured within the development area by providing nearby employment and retail/service opportunities for all of the residential developments within the area. While it is possible that including a greater mix of land uses within the development could increase the overall vehicle trip generation for the site, the overall traffic impacts created by mixed-uses within the development would be <u>less</u> than the projected impacts for residential land uses only. In this case, analyzing the development as residential only, assuming the maximum density permitted by the requested B2-2 zoning, provides a review of the highest potential overall traffic impacts from the site.

F. TRIP DISTRIBUTION

The traffic distribution and assignment for the proposed development was based upon the existing ADT volumes along the adjacent roadways and the peak-hour turning volumes. Due to the project's location, most of the traffic would use George Elmer Drive to connect with Mullan Road to the south. A smaller portion of traffic would likely use Chuck Wagon Drive to the reach Mullan Road heading to the west. The estimated split in traffic between George Elmer Drive and Chuck Wagon Drive is 95% vs. 5%. Traffic is expected to distribute onto the surrounding road network as shown on **Figure 3**. See the model in **Appendix B** for detailed trip distribution information.

G. TRAFFIC IMPACTS OUTSIDE OF THE DEVELOPMENT

Using the trip generation and trip distribution numbers, ATS determined the future Level of Service for the area intersections with and without the Mcnett Flats Subdivision. The projected no-build traffic conditions for 2025 and the anticipated intersection LOS with the Mcnett Flats

Subdivision are shown in **Tables 7 & 8**. The traffic volume calculations are included in **Appendix B** of this report and include a 6% background traffic volume growth rate to forecast regional traffic volume growth trends through full buildout in 2025. The projections also include traffic from the 345 additional residential planned for construction in the 44 Ranch subdivision, the planned 152 residential units from the proposed Remington Flats Residential Development, and 347 units from the Heron's Landing Subdivision. The projected LOS for the study intersections without the Mcnett Flats Subdivision are shown in in **Table 7** and the LOS with the proposed development are shown in **Table 8**.

	AM Peak	Hour	PM Peak Hour	
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS
Mullan Road & Chuck Wagon Drive*	38.9	E	91	F
Mullan Road & George Elmer Drive**	12.9	В	11.8	В
George Elmer Drive & Cattle Drive (Stop Control)	9.9/15.5	A/C	9.4/28.0	A/D

Table 7 – Projected No-Build Level of Service

*Northbound/Southbound Side Street LOS and Delay.

**LOS with traffic signal.

Table 7 indicates that the planned traffic signal at the intersection of Mullan Road and George Elmer Drive will largely correct the delay at this location. The traffic signal at George Elmer Drive will provide safe and efficient access onto to Mullan Road from the residential developments in this area and will allow the traffic signal to operate at LOS B past 2026. As development pressure increases in this area, the traffic signal will likely draw traffic from Chuck Wagon Drive onto George Elmer Drive to access the traffic signal. Traffic at the Chuck Wagon Drive intersection will increase to capacity and the remaining demand will shift to the traffic signal at George Elmer Drive. Based on the location of these two intersections (1,700-foot separation) it is unlikely that MDT would approve an additional traffic signal at Chuck Wagon Drive given the current roadway characteristics and short intersection separation. However, the traffic signal will also create significant gaps in the westbound traffic stream on Mullan Road which will facilitate improved access onto the roadway from Chuck Wagon Drive.

By 2026, traffic volumes on Chuck Wagon Drive will be approximately 2,200 VPD and traffic on George Elmer Drive will be approximately 8,500 VPD. **Table 8** shows the projected LOS at the study intersections with the recommended improvements to the road network. With the projected traffic form the Mcnett Flats Subdivision, the intersection of George Elmer Drive and Cattle Drive will likely require additional traffic controls to function property through full build-out of the projects in this area. This intersection should be reconfigured as a roundabout before full-buildout of the project.

The table shows that the George Elmer Drive intersection with Mullan Road will continue to function at LOS B with the Mcnett Flats Subdivision and the other projects in this area. The total vehicle delay at the signal will increase by 3-8 seconds per vehicle with the apartment project and will have additional capacity to serve vehicles from Chuck Wagon Drive as needed. In total, the Mcnett Flats Subdivision will account for 11.1% of traffic at the new traffic signal on Mullan Road, 32.7% of traffic at the proposed roundabout at Cattle Drive, and 1.1% of traffic at the Chuck Wagon Drive intersection.

	AM Peak	Hour	PM Peak	Hour		
Intersection	Delay (Sec.)	LOS	Delay (Sec.)	LOS		
Mullan Road & Chuck Wagon Drive*	42.7	E	110	F		
Mullan Road & George Elmer Drive**	19.2	В	14.5	В		
George Elmer Drive & Cattle Drive (Stop Control)	12.1/22.9	B/C	10.6/43.0	B/E		
George Elmer Drive & Cattle Drive (Roundabout)	5.1	A	6.3	А		

Table 8 – Pro	iected Leve	l of Service	with Deve	lopments
]			

*Northbound/Southbound Side Street LOS and Delay.

**LOS with traffic signal.

ATS also reviewed the left- and right-turn lane warrants for the intersections of Chuck Wagon Drive and George Elmer Drive based on the recommended practices from the MDT Road Design Manual with the additional traffic from the Mcnett Flats Subdivision, Remington Flats subdivision, the 44 Ranch subdivision, and the Heron's Landing subdivision. This analysis showed that there may be sufficient traffic to warrant a right-turn lane at Chuck Wagon Drive. The lane will likely be warranted by Phase II of the Remington Flats subdivision, but will be dependent on the construction rate for both the Remington Flats subdivision and the 44 Ranch development. The Mcnett Flats Subdivision will not contribute to the need for a right-turn lane at Chuck Wagon Drive as very little traffic from the development would benefit from using this turn lane. The intersection of George Elmer Drive already has a westbound right-turn lane which will likely be integrated into the traffic signal at this location. An eastbound left-turn lane will also be included with the traffic signal installation. The turn-lane warrant calculations are included in **Appendix D** of this report.

The total traffic generation from the Mcnett Flats subdivision will be in the range of 3,600 to 4,000 vehicle trips per day. According to the City of Missoula Subdivision Regulations Article 3-020 Table .2A, urban roadways with projected traffic volumes up to 2,500 VPD may be constructed as local street. Streets with up to 7,500 VPD may be considered urban collector roadways and should be constructed to an urban collector standard. Based on the layout of the development site, traffic from the various sections of the development will generally flow towards the middle of the project

along Abby Lane and Pius Way and then flow to the south along George Elmer Drive. Traffic on these road segments will generally be in the range of 500 to 2,000 VPD as shown in **Table 9**. It is possible that traffic volumes on George Elmer Drive may exceed 2,500 south of Abby Lane depending on how much traffic flows through the Mcnett Flats Development from the Remington Flats development to the west, but total traffic volumes will not exceed 7,500 trips per day on any road within the development. As such, George Elmer Drive south of Abby Lane should be constructed to an urban collector standard per the City of Missoula Subdivision regulations.

Road Segment	Projected Daily Traffic
Winchester Drive	600 VPD
Remington Drive	600 VPD
Abby Lane West	2,000 VPD
Abby Lane East	1,000 VPD
Pius Way	600 VPD
George Elmer Drive	3,000 VPD
Old Ranch Road	400 VPD

Table 9 – Projected Average Daily Traffic Within Mcnett Flats

Multi-Modal Consideration

The Mullan Road pedestrian trial is located to the north of Mullan Road and runs from Mullan Trail to Flynn Lane. This trail will likely be connected through to Reserve Street in the future (City of Missoula Project #475, estimated cost \$775,000). Once the developments to the south of 44 Ranch Estates subdivision and Heron's Landing Subdivision are completed, pedestrians will have access to the Mullan Road pedestrian trail using the internal sidewalk networks. All developers in this area are encouraged to provide sidewalk and trail connections, where possible, to encourage bicycle and pedestrian activity and decrease dependence on vehicles. Trail and sidewalk connections to the east towards Hellgate Elementary School are also encouraged. At this time there are no specific opportunities for the developers of the Mcnett Flats Subdivision to provide additional trials within the project boundary beyond the planned sidewalk network included with the current development plans.

The Missoula Mountain Line Bus does not currently provide any routes along Mullan Road to the west of Reserve Street. As residential areas in the portion of Missoula continue to develop, it is encouraged that bus routes to serve this portion of Missoula be created. Providing space for a future bus pull-out near the George Elmer Mullan Road intersection should be a part of future development plans in this area.

H. IMPACT SUMMARY & RECOMMENDATIONS

As proposed, the Mcnett Flats Subdivision development will increase traffic volumes on the surrounding road network and roadway improvements may be warranted with this project and the other planned developments in this area. The approval and design of a traffic signal for the intersection of George Elmer Drive and Mullan Road is underway to meet the current traffic demands for future traffic volume growth. The developers should contribute to the installation of a roundabout at the intersection of Cattle Drive and George Elmer Drive.

APPENDIX A

Traffic Data

Abelin Traffic Services

130 S. Howie Street Helena, MT 59601

> File Name : GeorgeEtmc Site Code : 00000000 Start Date : 10/23/2019 Page No : 1

	Groups Printed- Class 1 - New Group																				
		(George	ε				Mulla	า			G	George	ε				Mulla	n		
		Sc	outhbo	und			W	estbou	und			Northbound					E	astbou	und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK *	**																				
07:30 AM	2	0	31	0	33	4	31	0	0	35	0	0	0	0	0	0	265	1	0	266	334
07:45 AM	2	0	28	0	30	6	66	0	0	72	0	0	0	0	0	0	211	1	0	212	314
Total	4	0	59	0	63	10	97	0	0	107	0	0	0	0	0	0	476	2	0	478	648
08:00 AM	2	0	25	1	28	9	65	0	0	74	0	0	0	0	0	0	171	1	0	172	274
08:15 AM	2	0	20	1	23	11	85	0	0	96	0	0	0	0	0	0	125	4	0	129	248
*** BREAK *	**																				
Total	4	0	45	2	51	20	150	0	0	170	0	0	0	0	0	0	296	5	0	301	522
*** BREAK *	**																				
04:30 PM	0	0	12	0	12	20	175	0	0	195	0	0	0	0	0	0	104	2	0	106	313
04:45 PM	2	0	9	0	11	21	187	0	0	208	0	0	0	0	0	0	115	0	0	115	334
Total	2	0	21	0	23	41	362	0	0	403	0	0	0	0	0	0	219	2	0	221	647
05:00 PM	1	0	9	1	11	25	187	0	0	212	0	0	0	0	0	0	127	4	0	131	354
05:15 PM	2	0	12	0	14	36	212	0	0	248	0	0	0	0	0	0	121	0	0	121	383
*** BREAK *	**																				
Total	3	0	21	1	25	61	399	0	0	460	0	0	0	0	0	0	248	4	0	252	737
Grand Total	13	0	146	3	162	132	1008	0	0	1140	0	0	0	0	0	0	1239	13	0	1252	2554
Apprch %	8	0	90.1	1.9		11.6	88.4	0	0		0	0	0	0		0	99	1	0		
Total %	0.5	0	5.7	0.1	6.3	5.2	39.5	0	0	44.6	0	0	0	0	0	0	48.5	0.5	0	49	
Class 1	12	0	144	3	159	129	999	0	0	1128	0	0	0	0	0	0	1227				
<u>% Class 1</u>	92.3	0	98.6	100	98.1	97.7	99.1	0	0	98.9	0	0	0	0	0	0	99	92.3	0	99	98.9
New Group																					
% New Group	7.7	0	1.4	0	1.9	2.3	0.9	0	0	1.1	0	0	0	0	0	0	1	7.7	0	1	1.1

Abelin Traffic Services

Helena, MT 59601

File Name	: Chucktmc
Site Code	: 00000000
Start Date	: 10/23/2019
Page No	:1

									Group	s Printe	ed- Cla	ass 1									
		Ch	uck W	agon				Mulla	n .			Chu	uck W	agon				Mulla	n		
		Sc	outhbo	und			W	estbou	und			Northbound				Eastbound					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:30 AM	1	0	16	0	17	0	30	0	0	30	0	0	0	0	0	0	263	0	0	263	310
07:45 AM	3	0	12	0	15	4	62	0	0	66	0	0	0	0	0	0	207	1	0	208	289
Total	4	0	28	0	32	4	92	0	0	96	0	0	0	0	0	0	470	1	0	471	599
08:00 AM	1	0	7	0	8	4	61	0	0	65	0	0	0	0	0	0	168	1	0	169	242
08:15 AM	2	0	8	0	10	6	80	0	0	86	0	0	0	0	0	0	126	2	0	128	224
*** BREAK *	**																				
Total	3	0	15	0	18	10	141	0	0	151	0	0	0	0	0	0	294	3	0	297	466
*** BREAK *	**																				
04:45 PM	1	0	5	0	6	13	161	0	0	174	0	0	0	0	0	0	105	0	0	105	285
Total	1	0	5	0	6	13	161	0	0	174	0	0	0	0	0	0	105	0	0	105	285
05:00 PM	3	0	8	0	11	3	186	0	0	189	0	0	0	0	0	0	113	1	0	114	314
05:15 PM	4	0	5	0	9	4	183	0	0	187	0	0	0	0	0	0	129	2	0	131	327
05:30 PM	3	0	9	0	12	4	210	0	0	214	0	0	0	0	0	0	120	1	0	121	347
Grand Total	18	0	70	0	88	38	973	0	0	1011	0	0	0	0	0	0	1231	8	0	1239	2338
Apprch %	20.5	0	79.5	0		3.8	96.2	0	0		0	0	0	0		0	99.4	0.6	0		
Total %	0.8	0	3	0	3.8	1.6	41.6	0	0	43.2	0	0	0	0	0	0	52.7	0.3	0	53	

Basic Volume Report: ROUNDUP

Station ID : ROUNDUP

Info Line 1 : ATS Info Line 2 : Unicorn #6 GPS Lat/Lon :

ADT :

0

0 1

1

0 5 13 58 72

DB File : ROUNDUP.DB

Last Connected Device Type : Unic-L Version Number : 1.50

Serial Number :

Number of Lanes : 1 Posted Speed Limit : 0.0 mph

	Lane #1 Configuration													
# Dir.	Information	Volume Mode	Volume Sensors	Divide By 2	Comment									
1.	NB	Normal	Axle	Yes										

Lane #1 Basic Volume Data From: 16:00 - 10/23/2019 To: 16:59 - 10/24/2019

Date DW 0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 Total 102319 W 66 75 33 25 14 10 6 0 229 102419 T 0 0 1 1 0 5 13 58 72 62 53 57 67 59 51 55 554 57 59 0 5 13 58 72 53 67 51 55 783 Month Total : 0 1 1 0 62 75 33 25 66 14 10 6 0 0% 0% 1% 2% 7% 9% 8% 7% 7% 9% 8% 7% 8% 10% 4% 3% 2% 1% Percent : 0% 0% 0% 7% 1% 0%

62 53 57 67 59 51

	Sun	Mon	Tue	Wed	Thu	Fri	Sat		Total	Percent
DW Totals :	0	0	0	229	554	0	0	Weekday (Mon-Fri) :	783	100%
# Days :	0.0	0.0	0.0	0.3	0.7	0.0	0.0	ADT :	783	
ADT :	0	0	0	687	831	0	0	Weekend (Sat-Sun) :	0	0%
Percent :	0%	0%	0%	29%	71%	0%	0%	ADT :	0	

55 66 75 33 25 14 10

6 0

783

Basic Volume Report: GEORGE

Station ID : GEORGE

Info Line 1 : ATS Info Line 2 : UNICORN 5 GPS Lat/Lon :

DB File : GEORGE.DB

Last Connected Device Type : Unic-L Version Number : 1.50

Serial Number :

Number of Lanes : 1 Posted Speed Limit : 0.0 mph

	Lane #1 Configuration													
# Dir.	Information	Volume Mode	Volume Sensors	Divide By 2	Comment									
1.	NB	Normal	Axle	Yes										

Lane #1 Basic Volume Data From: 16:00 - 10/23/2019 To: 16:59 - 10/24/2019

Date DW 0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 Total 102319 W 121 173 147 101 70 36 19 9 676 102419 T 1 2 1 1 12 12 79 130 139 88 74 118 99 90 83 117 1046 2 12 12 79 74 99 70 1722 Month Total : 1 130 139 88 118 90 83 117 101 36 1 1 121 173 147 19 9 0% 1% 1% 5% 8% 8% 5% 4% 7% 6% 5% 5% 7% 9% 6% 2% 1% Percent : 0% 0% 0% 7% 10% 4% 1% ADT : 1 2 1 1 12 12 79 130 139 88 74 118 99 90 83 117 121 173 147 101 70 36 19 9 1722

	Sun	Mon	Tue	Wed	Thu	Fri	Sat		Total	Percent
DW Totals :	0	0	0	676	1046	0	0	Weekday (Mon-Fri) :	1722	100%
# Days :	0.0	0.0	0.0	0.3	0.7	0.0	0.0	ADT :	1722	
ADT :	0	0	0	2028	1569	0	0	Weekend (Sat-Sun) :	0	0%
Percent :	0%	0%	0%	39%	61%	0%	0%	ADT :	0	

APPENDIX B

Traffic Model

APPENDIX C

LOS Calculations

Seneral Information		Site Information	
Analyst	RLA	Intersection	Chuck Wagon & Mullan
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	11/7/2019	East/West Street	Mullan Road
Analysis Year	2019	North/South Street	Chuck Wagon Drive
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	George Elmer-Tollefson		
Lanes			
	ባ ነ ላ ቀ ላ ነ ነ ት		

Aajor Street: East-West

L

4

0

Westbound

Т

5

1

219

R

6

0

TR

7

U

Northbound

Т

8

0

R

9

0

U

L

7

0

Copyright © 2020 University of Florida. All Rights Reserved.

Delay, Queue Length, and Level of Service

Vehicle Volumes and Adjustments

Critical and Follow-up Headways

Approach

Movement

Number of Lanes

Percent Heavy Vehicles (%)

Proportion Time Blocked Percent Grade (%)

Right Turn Channelized Median Type | Storage

Base Critical Headway (sec)

Follow-Up Headway (sec)

Base Follow-Up Headway (sec)

95% Queue Length, Q₉₅ (veh)

Critical Headway (sec)

Flow Rate, v (veh/h)

Capacity, c (veh/h)

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

v/c Ratio

Configuration Volume (veh/h)

Priority

Eastbound

L

1

0

LT

6 2

4.1

4.12

2.2

2.22

6

1337

0.00

0.0

7.7

А

0.1

т

2

1

667

R

3

0

Undivided

U

4U

0

U

1U

0

Southbound

т

11

1

LR

R

12

0

1

2

6.2

6.22

3.3

3.32

36

304

0.12

0.4

18.4

С

18.4

С

L

10

0

34

2

7.1

6.42

3.5

3.52

0

	HCS7 Two-Way Stop	o-Control Report										
General Information		Site Information										
Analyst	RLA	Intersection	Chuck Wagon & Mullan									
Agency/Co.	ATS	Jurisdiction	City of Missoula									
Date Performed	11/7/2019	East/West Street	Mullan Road									
Analysis Year	2019	North/South Street	Chuck Wagon Drive									
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	George Elmer-Tollefson											
Lanes												
Vehicle Volumes and Adju	stments											

Westbound

Т

5

1

735

L

4

0

R

6

0

TR

32

U

Eastbound

L

1

0

LT

6 2

4.1

4.12

2.2

2.22

6

818

0.01

0.0

9.4

А

0.2

Т

2

1

478

R

3

0

Undivided

U

4U

0

U

1U

0

Northbound

Т

8

0

R

9

0

U

L

7

0

Copyright © 2020 University of Florida. All Rights Reserved.

Delay, Queue Length, and Level of Service

Approach

Movement

Number of Lanes

Percent Heavy Vehicles (%)

Proportion Time Blocked Percent Grade (%)

Right Turn Channelized Median Type | Storage

Base Critical Headway (sec)

Follow-Up Headway (sec)

Base Follow-Up Headway (sec)

95% Queue Length, Q₉₅ (veh)

Critical Headway (sec)

Flow Rate, v (veh/h)

Capacity, c (veh/h)

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

v/c Ratio

Critical and Follow-up Headways

Configuration Volume (veh/h)

Priority

Southbound

т

11

1

LR

R

12

0

10

2

6.2

6.22

3.3

3.32

37

207

0.18

0.6

26.1

D

26.1

D

L

10

0

25

2

7.1

6.42

3.5

3.52

0

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	RLA	Intersection	George Elmer & Mullan
Agency/Co.	ATS	Jurisdiction	City of Missoula
Date Performed	11/7/2019	East/West Street	Mullan Road
Analysis Year	2019	North/South Street	George Elmer Drive
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	George Elmer-Tollefson		
Lanes			
		× ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	

Approach		Eastb	ound			Westk	ound			North	bound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	1		0	0	0		1	0	1
Configuration		LT					Т	R						L		R
Volume (veh/h)		3	708				215	22						138		11
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized						N	0							N	0	
Median Type Storage				Undi	vided											
Critical and Follow-up He																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												6.42		6.22
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		3												141		11
Capacity, c (veh/h)		1325												288		820
v/c Ratio		0.00												0.49		0.01
95% Queue Length, Q ₉₅ (veh)		0.0												2.5		0.0
Control Delay (s/veh)		7.7												28.8		9.4
Level of Service (LOS)		А												D		А
Approach Delay (s/veh)	0.1											27.4				
Approach LOS												D				

Copyright © 2020 University of Florida. All Rights Reserved.

	HCS7 Two-Way Stop-Control Report															
General Information							Site	Inforr	natio	n						
Analyst	RLA						Inters	ection			Georg	ge Elmer	& Mulla	n		
Agency/Co.	ATS						Jurisd	iction			City o	of Missou	ila			
Date Performed	11/7/2	2019					East/V	Vest Stre	eet		Mulla	n Road				
Analysis Year	2019	2019 North/South Street George Elmer Drive														
Time Analyzed	PM Pe	M Peak Hour Peak Hour Factor 0.98														
Intersection Orientation	East-V	East-West Analysis Time Period (hrs) 0.25														
Project Description	Georg	eorge Elmer-Tollefson														
_anes																
A A A A A A A A A A A A A A A A A A A																
Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U 1 2 3 4U 4 5 6								7	8	9		10	11	12	

Number of Lanes	0	0	1	0	0	0	1	1	0	0	0	1	0	1
Configuration		LT					Т	R				L		R
Volume (veh/h)		13	490				757	141				67		10
Percent Heavy Vehicles (%)		2										2		2
Proportion Time Blocked														
Percent Grade (%)												()	
Right Turn Channelized						Ν	ю					N	0	
Median Type Storage				Undi	vided									
Critical and Follow-up He	adwa	ys												
Base Critical Headway (sec)		4.1										7.1		6.2
Critical Headway (sec)		4.12										6.42		6.22
Base Follow-Up Headway (sec)		2.2										3.5		3.3
Follow-Up Headway (sec)		2.22										3.52		3.32
Delay, Queue Length, and	Leve	l of Se	ervice											
Flow Rate, v (veh/h)		13										68		10
Capacity, c (veh/h)		744										174		399
v/c Ratio		0.02										0.39		0.03
95% Queue Length, Q ₉₅ (veh)		0.1										1.7		0.1
Control Delay (s/veh)		9.9										38.6		14.3

А

0.5

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

Е

35.4

Е

В

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RLA	Intersection	George Elmer & Cattle Dr.							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	8/13/2020	East/West Street	Cattle Drive							
Analysis Year	2019	North/South Street	George Elmer Drive							
Time Analyzed	Existing AM Peak Hour	Peak Hour Factor	0.90							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	George Elmer-Tollefson									
Lanes										

Approach	Eastbound Westbound									North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		1	2	104		45	2	1		18	1	8		1	1	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)	0 0															
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			119				53			20				1		
Capacity, c (veh/h)			1072				773			1614				1603		
v/c Ratio			0.11				0.07			0.01				0.00		
95% Queue Length, Q ₉₅ (veh)			0.4				0.2			0.0				0.0		
Control Delay (s/veh)			8.8				10.0			7.3				7.2		
Level of Service (LOS)	A B								А				А			
Approach Delay (s/veh)	8.8 10.0							4.9				2.4				
Approach LOS	A B															

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RLA	Intersection	George Elmer & Cattle Dr.							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	8/13/2020	East/West Street	Cattle Drive							
Analysis Year	2019	North/South Street	George Elmer Drive							
Time Analyzed	Existing PM Peak Hour	Peak Hour Factor	0.90							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	George Elmer-Tollefson									
Lanes										

-	,																
Approach	Eastbound Westbound								North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		1	2	54		23	2	1		108	1	46		1	1	1	
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)	0 0																
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	adways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)			63				29			120				1			
Capacity, c (veh/h)			1034				585			1614				1547			
v/c Ratio			0.06				0.05			0.07				0.00			
95% Queue Length, Q ₉₅ (veh)			0.2				0.2			0.2				0.0			
Control Delay (s/veh)			8.7				11.5			7.4				7.3			
Level of Service (LOS)			А				В			А				А			
Approach Delay (s/veh)	8.7 11.5								5	.3		2.4					
Approach LOS	A B																

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

HCS7 Signalized Intersection Results Summary

		псэ	7 Sig	nalize	am	lersec		tesu	its Sun	nmary	/				
								1							
General Inforn	nation								Intersect	ion Info	ormatio	on	_	수 사수	a ↓ ↓a \ <u>a</u> .
Agency		ATS							Duration,	h	0.250)		×	*
Analyst		RLA		Analys	is Dat	e Dec 1	3, 2019		Area Typ	e	Other		<u></u> 4 →		4
Jurisdiction				Time F	Period	AM P	eak Hou	ır	PHF		0.98			w‡ ≋	€ ~_ <mark>∲</mark>
Urban Street		Mullan Road		Analys	is Yea	ar 2025	No Build	t	Analysis	Period	1> 7:	00			7 7
Intersection		George Ulmer		File Na	ame	Georg	geSigna	IAMnc	B.xus						
Project Descrip	otion	George Elmer-Tolle	fson										5	* 1 *	****
							_		_	_			-		-
Demand Inform	nation				EB		<u> </u>	W	B	<u> </u>	NB		<u> </u>	SI	3
Approach Move	ement					R			R			R	L	–	R
Demand (v), v	/eh/h			8	874			27	1 122	_			434		37
Signal Informa	ation					s									
	513	Reference Phase	2			202							Z		
Offset s	0	Reference Point	End		Γ.							1	2		3 4
Uncoordinated	Ves	Simult Gap E/M	On	Green	26.8	14.5	0.0	0.0	0.0	0.0	-		A		
Eorce Mode	Fixed	Simult. Gap N/S	On	Ped	4.0	4.0	0.0	0.0		0.0	-	5			7 8
Porce Mode	Fixed	Simult. Gap N/S	OII	Reu	1.0	1.0	0.0	0.0	0.0	0.0		5	0		1 0
Timer Results			_	FBI		FBT	WB		WBT	NBI		NBT	SBI		SBT
Assigned Phase	e					2		-	6			1101		-	4
Case Number	•				-	6.0		-	7.0					\rightarrow	9.0
Phase Duration	1. S					31.8			31.8					-	19.5
Change Period	. (Y+R)	c). S		<u> </u>	+	5.0		-	5.0					\rightarrow	5.0
Max Allow Hea	dwav (/	иАН). s			3.0			3.0						3.0	
Queue Clearan	ce Time	e (q s). S		-	24.5		-	6.3					\rightarrow	13.5	
Green Extensio	on Time	(ge), s				2.0			0.0	0.0					0.9
Phase Call Pro	bability				-	1.00		-	1.00					\neg	1.00
Max Out Proba	bility					0.00			1.00						0.00
Movement Gro	oup Res	ults			EB			WB	3		NB			SE	3
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2			6	16				7		14
Adjusted Flow I	Rate(<i>v</i>), veh/h		8	892			277	124		_		443		38
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n	1120	1870			1870	0 1585				1867		1662
Queue Service	Time (g	g s), S		0.2	22.5			4.3	2.1				11.5		0.9
Cycle Queue C	learanc	e Tîme (<i>g c</i>), s		4.1	22.5			4.3	2.1				11.5		0.9
Green Ratio (g	1/C)			0.52	0.52			0.52	2 0.52				0.28		0.28
Capacity (c), v	/eh/h			640	977			977	828				530		472
Volume-to-Cap	acity Ra			0.013	0.912	2	<u> </u>	0.28	3 0.150			<u> </u>	0.835		0.080
Back of Queue	(Q), ft/	In (50 th percentile)		0.9	152.4	l	<u> </u>	27.3	3 11.4		_		103.3		6.6
Back of Queue	(Q), Ve	en/in (50 th percenti	le) ile)	0.0	6.0			1.1	0.4				4.1		0.3
Queue Storage		RQ) (50 th percent	ile)	0.00	0.00		<u> </u>	0.00	0.00				0.00		0.00
Uniform Delay	(01), S			8.0	11.3		<u> </u>	0.9	0.4				17.4		13.0
Incremental De	alay (a 2), s/veh		0.0	1.5			0.1	0.0				1.4		0.0
Initial Queue De		3), s/veh		0.0	0.0			0.0	0.0				0.0		0.0
Control Delay (ontrol Delay (<i>d</i>), s/veh			0.0	12.8	-		7.0	0.4				1ð./		13.0
		/1.08		A 40.7	B	P	0.0	A	A	0.0			B 10.0		В
Approach Delay	y, s/ven	/ LUS		12.7		D	0.0		A	0.0			18.3 P		D
mersection De	iay, s/ve	III / LUS				1.	2.9						D		
Multimodal Re	sults				FB			WB	3		NB			SI	3
Pedestrian LOS	S Score	/ LOS		0.67	, ,	A	1.87	7	В	1,94		В	1.94		В
Bicycle LOS So	core / LC	DS	1.97	·	В	1.15	5	А					+	F	

HCS7 Signalized Intersection Results Summary

	1100	/ Sig	nanze	u III	1613	eu		esu	113 3	un	innary					
-														_		
General Information									Inters	secti	on Info	ormatio	on	_	≠ ,,,,,,,,,	a ↓ ↓a \ <u>a</u>
Agency	ATS								Durati	ion,	h	0.250			¥	*
Analyst	RLA		Analys	is Da	te De	ec 13	3, 2019		Area ⁻	Туре	;	Other	-	<u></u>		<u>*</u>
Jurisdiction			Time F	Period	I PN	/ Pe	eak Hou	r	PHF			0.98			w] s	€ ^_ ←
Urban Street	Mullan Road		Analys	is Yea	ar 202	25 N	No Builc	1	Analy	sis F	Period	1> 7:	00	4		¥ 2
Intersection	George Ulmer		File Na	ame	Ge	org	eSignal	PMno	B.xus							
Project Description	George Elmer-Tolle	fson												1	* 1 *	* ` 1 * [*]*
							12				_					
Demand Information				EE	3			W	В			NB			S	В
Approach Movement			L	Т		R	L	Т	-	R	L	Т	R	L	Т	R
Demand (<i>v</i>), veh/h			31	59	5			94	7 4	81				260		27
			10	_		_		_	11		_	_				
Signal Information				3	뒫신	6								_		
Cycle, s 44.0	Reference Phase	2		₩Ÿ.									1	4		3 4
Offset, s 0	Reference Point	End	Green	25.7	7 8.4	4	0.0	0.0) 0	0.0	0.0			ĸ		
Uncoordinated Yes	Simult. Gap E/W	On	Yellow	4.0	4.(0	0.0	0.0) 0	0.0	0.0					
Force Mode Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0	0.0	0.0) 0	0.0	0.0		5	6		7 8
															T.	
Timer Results			EBL	-	EBT		WB		WBT	·	NBL		NBT	SBL		SBT
Assigned Phase					2				6							4
Case Number					6.0				7.0							9.0
Phase Duration, s				30.7	·			30.7							13.4	
Change Period, (Y+R	c), S			5.0				5.0							5.0	
Max Allow Headway (A	ЛАН), s			3.0				3.0	T						3.0	
Queue Clearance Time	(gs), s			23.8				21.8						1	7.9	
Green Extension Time	(qe), s				1.6				0.0						0.5	
Phase Call Probability				-	1.00			+	1.00							0.97
Max Out Probability					0.01				1.00	T						0.00
,																
Movement Group Res	ults			EB				WE	8			NB			SE	3
Approach Movement			L	Т	R	2	L	Т	R	2	L	Т	R	L	Т	R
Assigned Movement			5	2				6	16	6				7		14
Adjusted Flow Rate (v), veh/h		32	607	·			966	49	1				265		28
Adjusted Saturation Flo	w Rate (<i>s</i>), veh/h/l	n	591	1870	0			187) 158	85			1	1867		1662
Queue Service Time (g	y s), S		2.2	8.9				19.8	3 8.3	3				5.9		0.6
Cycle Queue Clearance	e Time (<i>g c</i>), s		21.8	8.9				19.8	3 8.3	3		-		5.9		0.6
Green Ratio (g/C)			0.58	0.58	3			0.58	3 0.5	58		-		0.19	_	0.19
Capacity (c), veh/h			245	109	1			109	1 92	5				357		318
Volume-to-Capacity Ra	tio(X)		0.129	0.55	6			0.88	6 0.53	31				0.743	_	0.087
Back of Queue (Q). ft/	In (50 th percentile))	6	37.2	2			146.	1 30.	.3				52.8		4.6
Back of Queue (Q), ve	eh/In (50 th percenti	le)	0.2	1.5				5.8	1.2	2		-		2.1	_	0.2
Queue Storage Ratio (RQ) (50 th percent	ile)	0.00	0.00)			0.00) 0.0)()				0.00		0.00
Uniform Delay (d_1) s	/veh		17.3	5.7	-			8.0	56	6				16.9		14.8
Incremental Delay (d a) s/veh	0.1	0.2	+			8.6	0.0	3				12		0.0	
Initial Queue Delay (d 2	2), s/veh		0.1	0.2	+			0.0	0.0	0				0.0		0.0
Control Delay (d) shu	ial Queue Delay (d ₃), s/veh			5.0	-			16.0	5 5 0	γ α				18.1		1/1 8
Control Delay (d), s/veh		R	Δ		-		R	, Ο.: Λ					R		P	
Approach Doloy alush	/1.05		61		^		12 0				0.0		I	17.0		
Approach Delay, s/ven	h / L OS		0.4		A	14	0 0	,	В	+	0.0			P 17.8		D
miersection Delay, s/ve						11	.0							ں 		
Multimodal Results				FB				WF	3			NB			SE	3
Pedestrian LOS Score	/1.05		0.65	5	Δ		185 B 193		B	1 93		B				
Bicycle I OS Score / I C)S	1.54		B		2.80)	C C	\rightarrow	1.00	-	5	1.00	\rightarrow	F	

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RLA	Intersection	Chuck Wagon & Mullan							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	11/7/2019	East/West Street	Mullan Road							
Analysis Year	2025	North/South Street	Chuck Wagon Drive							
Time Analyzed	AM Peak No Build	Peak Hour Factor	1.00							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	George Elmer-Tollefson									
Lanes										

Approach	Eastbound Westbound							North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		11	723				257	51						158		24
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												6.42		6.22
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		11													182	
Capacity, c (veh/h)		1253													280	
v/c Ratio		0.01													0.65	
95% Queue Length, Q ₉₅ (veh)		0.0													4.2	
Control Delay (s/veh)		7.9													38.9	
Level of Service (LOS)		А													E	
Approach Delay (s/veh)	0.2										38.9					
Approach LOS						E										

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

-										
HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RLA	Intersection	Chuck Wagon & Mullan							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	11/7/2019	East/West Street	Mullan Road							
Analysis Year	2025	North/South Street	Chuck Wagon Drive							
Time Analyzed	PM Peak No Build	Peak Hour Factor	1.00							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	George Elmer-Tollefson									
Lanes										

人人人	
D	<u>~</u>
<u></u>	4
<u>_</u>	+
4	<u>s</u> _
¥	
	Y
→	4
★	۲.
🚽 en la seconda de la constante de	Ģ
ካ ቁ ቁ የ ተ ቅ ሾ	
Major Street: Fast-West	
major saleet. East West	

Approach		Eastb	ound		Westbound					North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		LT						TR							LR		
Volume (veh/h)		22	524				796	179						103		30	
Percent Heavy Vehicles (%)		2												2		2	
Proportion Time Blocked																	
Percent Grade (%)														()		
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.12												6.42		6.22	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.22												3.52		3.32	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		22													133		
Capacity, c (veh/h)		707													159		
v/c Ratio		0.03													0.84		
95% Queue Length, Q ₉₅ (veh)		0.1													5.6		
Control Delay (s/veh)		10.3													90.7		
Level of Service (LOS)	B														F		
Approach Delay (s/veh)		0.8												90.7			
Approach LOS									F			-					

Copyright © 2020 University of Florida. All Rights Reserved.

HCS7 Two-Way Stop-Control Report										
General Information										
Analyst	RLA	Intersection	George Elmer & Cattle Dr.							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	8/13/2020	East/West Street	Cattle Drive							
Analysis Year	2025	North/South Street	George Elmer Drive							
Time Analyzed	AM Peak Hour No Build	Peak Hour Factor	0.90							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description George Elmer-Tollefson										
Lanes										
14 ↓ ለጭ ኑ ር ሆ										

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		1	2	303		47	2	1		83	0	8		1	1	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)	0 0															
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadways															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			340				56			92				1		
Capacity, c (veh/h)			1074				400			1614				1605		
v/c Ratio			0.32				0.14			0.06				0.00		
95% Queue Length, Q ₉₅ (veh)			1.4				0.5			0.2				0.0		
Control Delay (s/veh)			9.9				15.5			7.4				7.2		
Level of Service (LOS)			А				С			А				А		
Approach Delay (s/veh)	9.9 15.5						6.8				2.4					
Approach LOS	A C															

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RLA	Intersection	George Elmer & Cattle Dr.							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	8/13/2020	East/West Street	Cattle Drive							
Analysis Year	2025	North/South Street	George Elmer Drive							
Time Analyzed	PM Peak Hour No Build	Peak Hour Factor	0.90							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	George Elmer-Tollefson									
Lanes										
レキナマキャプロ										

Approach		Eastb	ound		Westbound					North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		1	2	185		24	2	1		332	1	49		1	1	1
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)		0 0														
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adways															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)			209				30			369				1		
Capacity, c (veh/h)			1025				187			1614				1543		
v/c Ratio			0.20				0.16			0.23				0.00		
95% Queue Length, Q ₉₅ (veh)			0.8				0.6			0.9				0.0		
Control Delay (s/veh)			9.4				28.0			7.9				7.3		
Level of Service (LOS)			А				D			А				А		
Approach Delay (s/veh)		9.4 28.0						7.1				2.4				
Approach LOS		A D														

Copyright © 2020 University of Florida. All Rights Reserved.

HCS7 Signalized Intersection Results Summary

		псэ	/ Sig	nanze	a m	lerset	JUC	лк	esu	its Sui	nnary	/					
				Intersection Information													_
General Inforn	nation									Intersec	tion Info	ormati	on	_	수 사석		14
Agency		ATS								Duration	h	0.25)				K
Analyst		RLA		Analys	sis Da	te Dec	13, :	2019		Area Typ	е	Othe	r				*
Jurisdiction				Time F	Period	AM F	Peak	k Hou	r	PHF		0.98				Г Е 8	
Urban Street		Mullan Road		Analys	sis Yea	ar 2025	5 Wit	th De	v.	Analysis	Period	1> 7	00	7			7 7
Intersection		George Ulmer		File Na	ame	Geor	geS	Signal	AMal	t.xus							
Project Descrip	otion	George Elmer-Tolle	fson											ካ	* 1 *	444	ŕ
Demand Inform	nation				EB	;	\rightarrow		W	B		NB		<u> </u>	S	B	
Approach Move	ement			L	Т	R	_	L	Т	R		Т	R	L		Г	R
Demand (v), v	/eh/h			11	874	1			27	2 178				584			54
Oissue al Justice and	4!			1	1		_			1							1
Signal Informa	ation		-			뛰고											く
Cycle, s	73.0	Reference Phase	2	-	$ \rightarrow $								1	4 2		3	4
Offset, s	0	Reference Point	End	Green	37.2	25.8	;	0.0	0.0	0.0	0.0			5			
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0		0.0	0.0	0.0	0.0						
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0		0.0	0.0	0.0	0.0	_	5	6		7	8
					1				_								
Timer Results						EBT	╇	WBL	-	WBT	NBL	-	NBT	SBL		S	3BT
Assigned Phas	e				2	╇		\rightarrow	6					\rightarrow		4	
Case Number						6.0	╇		_	7.0						ć	Э.О
Phase Duration	1, S				42.2				42.2						3	0.8	
Change Period	, (Y+ R	c), S				5.0				5.0						5.0	
Max Allow Hea	dway(<i>I</i>	<i>MAH</i>), s				3.0	┶			3.0						3	3.0
Queue Clearan	ce Time	e (g s), s				34.8				8.3						2	4.3
Green Extensio	on Time	(g _e), s				2.0				0.0						1	1.2
Phase Call Pro	bability					1.00				1.00						1	.00
Max Out Proba	bility					0.00				1.00						0	.00
	_										_						
Movement Gro	oup Res	ults			EB		╇		WE			NB			S	B	
Approach Move	ement			L	Т	R	╇	L	Т	R	L	Т	R	L			R
Assigned Move	ement			5	2		╇		6	16			<u> </u>	7		\rightarrow	14
Adjusted Flow	Rate(<i>v</i>), veh/h		11	892		╇		278	182			<u> </u>	596	<u> </u>	$ \rightarrow$	55
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	1119	1870)	+		1870) 1585			<u> </u>	1867		$ \rightarrow $	1662
Queue Service	Time (g	g s), S		0.4	32.8	;	+		6.3	4.7			<u> </u>	22.3			1.6
Cycle Queue C	learanc	e Time (<i>g c</i>), s		6.3	32.8	;	╇		6.3	4.7				22.3			1.6
Green Ratio (g	ŋ∕C)			0.51	0.51		+		0.51	0.51			<u> </u>	0.35			0.35
Capacity (c), v	/eh/h			580	955		╇		955	809				660			588
Volume-to-Cap	acity Ra	itio(X)		0.019	0.934	4	╇		0.29	1 0.225			<u> </u>	0.902			0.094
Back of Queue	(Q), ft/	In (50 th percentile)		2.3	295.9	9			53.8	34				230.8			13.9
Back of Queue	(Q), ve	eh/In (50 th percenti	le)	0.1	11.6				2.1	1.3				9.2			0.6
Queue Storage	Ratio (RQ) (50 th percent	ile)	0.00	0.00				0.00	0.00				0.00			0.00
Uniform Delay	(d 1), s	/veh		12.1	16.9				10.4	10.0				22.6			15.9
Incremental De	lay (<i>d</i> 2), s/veh		0.0	2.4				0.1	0.1				3.8			0.0
Initial Queue D	elay(<i>d</i>	ay (<i>d</i> 3), s/veh			0.0				0.0	0.0				0.0			0.0
Control Delay (control Delay (d), s/veh				19.2	2			10.4	10.0				26.4			15.9
Level of Service (LOS)				В	В				В	В				С			В
Approach Delay, s/veh / LOS				19.1		В		10.3	;	В	0.0			25.5	,		С
Intersection De	lay, s/ve	h / LOS				1	9.2							В			
Multimodal Re	Multimodal Results				EB				WE			NB			S	В	
Pedestrian LOS	S Score	/ LOS		0.69)	Α		1.88	;	В	1.95		В	1.95	;		В
Bicycle LOS So	core / LC	DS		1.98	3	В		1.25	;	A							F

HCS7 Signalized Intersection Results Summary

		псэ	/ Sig	nanze	u II	ne	1360		1621	unt	s Sull	innary	/					
O	4!			Intersection Information											4 1 4		T.	
General Inform	nation	ATO								In	tersect		ormati	on	_	J	Ļ	
Agency		AIS			· .	•		0.0040			uration,	n	0.250)				R
		RLA		Analys	sis Da	ate	Dec 1	3, 2019		Ar	rea Type	9	Othe	r	≯≯	1	¥	
Jurisdiction				lime F		3	PMPe	eak Hou	r	P	HF		0.98			e W	E	↓ ↓
Urban Street		Mullan Road		Analys	sis Ye	ar	2025	With De	V.	Ar	nalysis I	Period	1> 7:	00				r r
Intersection			,	File Na	ame		Georg	eSignal	РМа	ilt.xi	us				_			
Project Descrip	tion	George Elmer-Tolle	tson													4 1 4	- T P	1
Demand Inform	nation				EE	В			V	VB		<u> </u>	NB			S	B	
Approach Move	ement			L	Т	-	R	L	T	Т	R	L	Т	R	L	Т		R
Demand (v), v	/eh/h			40	59	7			9	49	641				357		\neg	38
				10										<u> </u>			<u>نم</u>	
Signal Informa	ation		_		7	\geq	25								_			L
Cycle, s	56.5	Reference Phase	2		٣ž.									1	4		3	A
Offset, s	0	Reference Point	End	Green	33.0	0	13.4	0.0	0.	.0	0.0	0.0			<u> </u>			
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0		4.0	0.0	0.	.0	0.0	0.0						
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0		1.0	0.0	0.	.0	0.0	0.0		5	6		7	8
													_					
Timer Results				EBI	-	E	BT	WB	-	V	WBT	NBL	· -	NBT	SBL	<u> </u>	S	BT
Assigned Phas	е				_		2		_		6					\rightarrow		4
Case Number				<u> </u>	_	6	5.0		_	-	7.0					\rightarrow	g).0 0.1
Phase Duration	n, s	```		\rightarrow	3	8.0		_	3	38.0				<u> </u>	\rightarrow	18	8.4	
Change Period	, (Y+R)	c), S		<u> </u>	-	5	5.0			;	5.0		_			\rightarrow	5	».0
Max Allow Hea	dway(/	VIAH), S			\rightarrow	2	3.1	<u> </u>			3.1		+		<u> </u>	\rightarrow	3	5.0 0.5
Queue Clearan		e (gs), s		<u> </u>	\rightarrow	3	1.0	<u> </u>	_	2	27.3		_			\rightarrow	12	2.5
Green Extensio	bobility	(<i>g</i> e), s		<u> </u>	\rightarrow	1	00		\rightarrow	1	0.0					\rightarrow	1).7
Phase Call Pro					-	1	.00		+	1	1.00					\rightarrow	1.	.00
Max Out Proba	Dinty					0	.03			1	1.00						0.	.00
Movement Gro	oup Res	sults			EB	3			W	В			NB			SI	В	_
Approach Move	ement			L	Т	Т	R	L	Т	·	R	L	Т	R	L	Т	\top	R
Assigned Move	ment			5	2				6		16		_		7			14
Adjusted Flow	Rate (v), veh/h		41	609	9			96	8	654				364			39
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n	590	187	0			187	70	1585				1867			1662
Queue Service	Time (g	g s), S		3.6	11.4	4			25.	.3	16.6				10.5			1.0
Cycle Queue C	learanc	e Time (<i>g c</i>), s		29.0	11.4	4			25.	.3	16.6				10.5			1.0
Green Ratio (g	r∕C)			0.59	0.59	9			0.5	59	0.59				0.24			0.24
Capacity (c), v	/eh/h			210	109	6			109	96	929				446			397
Volume-to-Cap	acity Ra	atio (X)		0.194	0.55	56			0.88	84	0.704				0.817			0.098
Back of Queue	(Q), ft/	/In (50 th percentile)		11.2	70				219).1	98.5				101.3			8.6
Back of Queue	(Q), ve	eh/In (50 th percenti	le)	0.4	2.8	3			8.6	6	3.9				4.0		$ \perp$	0.3
Queue Storage	Ratio (RQ) (50 th percent	ile)	0.00	0.00	0			0.0	0	0.00				0.00			0.00
Uniform Delay	(d 1), s	/veh		22.6	7.2	2			10.	.1	8.3		_		20.5			16.9
Incremental De	lay (<i>d</i> 2	e), s/veh		0.2	0.2	2			8.	5	2.1				1.4			0.0
Initial Queue D	Delay (d 3), s/veh			0.0	0.0				0.0	0	0.0				0.0			0.0
Control Delay (Control Delay (<i>d</i>), s/veh			22.7	7.4	ł			18.	.6	10.4				22.0			17.0
Level of Service (LOS)				С	Α				В		В				С			В
Approach Delay, s/veh / LOS				8.4			A	15.3	3		В	0.0			21.5			С
Intersection De	Intersection Delay, s/veh / LOS						14	.5							В			
Multimodel De	Multimodel Desulte				EP	2			۱۸/	D			ND			01		
Pedestrian LOG	S Score	/1.05		0.64		נ	Δ	1 94	VV	D	B	1 0/	INB	B	1.04		ر	B
Bicycle LOS Sc	core / I C)\$		1 56	, ;		B	3 16			C	1.34		5	1.34	\rightarrow		F
				1.00	-		-	0.10			-							•

Copyright © 2020 University of Florida, All Rights Reserved.

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	RLA	Intersection	Chuck Wagon & Mullan								
Agency/Co.	ATS	Jurisdiction	City of Missoula								
Date Performed 11/7/2019 East/West Street Mullan Road											
Analysis Year	2025	North/South Street	Chuck Wagon Drive								
Time Analyzed	AM Peak With Developments	Peak Hour Factor	1.00								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	George Elmer-Tollefson										
Lanes											

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		14	726				274	51						159		31
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)													()		
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	llow-up Headways															
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												6.42		6.22
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		14													190	
Capacity, c (veh/h)		1235													276	
v/c Ratio		0.01													0.69	
95% Queue Length, Q ₉₅ (veh)		0.0													4.6	
Control Delay (s/veh)		7.9													42.7	
Level of Service (LOS)	A														E	
Approach Delay (s/veh)		0.	.3										42.7			
Approach LOS													E			

Copyright © 2020 University of Florida. All Rights Reserved.

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RLA	Intersection	Chuck Wagon & Mullan							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	11/7/2019	East/West Street	Mullan Road							
Analysis Year	2025 North/South Street Chuck Wagon Drive									
Time Analyzed	PM Peak With Development	Peak Hour Factor	1.00							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	George Elmer-Tollefson									
Lanes										

Approach		Eastb	ound			West	bound			North	bound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		30	533				807	181						104		34
Percent Heavy Vehicles (%)		2												2		2
Proportion Time Blocked																
Percent Grade (%)														()	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.12												6.42		6.22
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.22												3.52		3.32
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		30													138	
Capacity, c (veh/h)		699													151	
v/c Ratio		0.04													0.91	
95% Queue Length, Q ₉₅ (veh)		0.1													6.4	
Control Delay (s/veh)		10.4													110.3	
Level of Service (LOS)	B														F	
Approach Delay (s/veh)		1.	.2									110.3				
Approach LOS														ſ	-	

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RLA	Intersection	George Elmer & Cattle Dr.							
Agency/Co.	ATS	Jurisdiction	City of Missoula							
Date Performed	8/13/2020	East/West Street	Cattle Drive							
Analysis Year	2025	North/South Street	George Elmer Drive							
Time Analyzed	AM Peak Hour With Dev.	Peak Hour Factor	0.90							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description George Elmer-Tollefson										
Lanes										
14 + Y + Y + P P P P P P P P P P P P P P P										

·																	
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		1	2	244		47	2	1		63	79	8		1	226	1	
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)		()			()										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up Headways																	
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)			274				56			70				1			
Capacity, c (veh/h)			778				256			1307				1491			
v/c Ratio			0.35				0.22			0.05				0.00			
95% Queue Length, Q ₉₅ (veh)			1.6				0.8			0.2				0.0			
Control Delay (s/veh)			12.1				22.9			7.9				7.4			
Level of Service (LOS)			В				С			А				А			
Approach Delay (s/veh)		12	2.1			22	2.9			3.	.6		0.0				
Approach LOS	В					(2										

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	RLA	Intersection	George Elmer & Cattle Dr.									
Agency/Co.	ATS	Jurisdiction	City of Missoula									
Date Performed	8/13/2020	East/West Street	Cattle Drive									
Analysis Year	2025	North/South Street	George Elmer Drive									
Time Analyzed	PM Peak Hour With Dev.	Peak Hour Factor	0.90									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	George Elmer-Tollefson											
Lanes												
	74 t 74	J J 4										

Approach Eastbound Westbound Northbound Coutbbound																	
Approach		Eastb	ound			West	bound			North	oound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		1	2	146		24	2	1		265	235	49		1	147	1	
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)		(C			()										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up Headways																	
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)			166				30			294				1			
Capacity, c (veh/h)			807				124			1408				1239			
v/c Ratio			0.21				0.24			0.21				0.00			
95% Queue Length, Q ₉₅ (veh)			0.8				0.9			0.8				0.0			
Control Delay (s/veh)			10.6				43.0			8.2				7.9			
Level of Service (LOS)			В				E			А				А			
Approach Delay (s/veh)		10).6			43	3.0			5.	1		0.1				
Approach LOS	В																

Copyright $\ensuremath{\mathbb{C}}$ 2020 University of Florida. All Rights Reserved.

	HCS7 Roundabouts Report																		
General Information	mation																		
Analyst	RLA					*				Inters	ection			George Elmer & Cattle Dr.					
Agency or Co.	ATS				+				E/W S	E/W Street Name					Cattle Drive				
Date Performed	8/13/	2020			1				÷	N/S S	treet Na	ne		Ge	George Elmer Drive				
Analysis Year	2025					w1	E) †		Analy	sis Time	Period (hr	s)	0.2	25				
Time Analyzed	AM P	eak Hou	ur With D	ev.	*					Peak	Hour Fac	tor		0.9	0.92				
Project Description	Georg	ge Elme	r - Tollefs	on			* / *			Jurisc	liction		Cit	City of Missoula					
Volume Adjustments	and	Site C	Charac	teristic	s														
Approach			EB			W	'B				N	В		SB					
Movement	U	L	Т	R	U	L	Т	R		U	L	т	R	U	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0		0	0	1	0	0	0	1	0		
Lane Assignment			Ľ	ſR			LTR					LTR					LTR		
Volume (V), veh/h	0	1	2	244	0	47	2	1		0	63	79	8	0	1	226	0		
Percent Heavy Vehicles, %	3	3	3	3	3	3	3	3		3	3	3	3	3	3	3	3		
Flow Rate (VPCE), pc/h	0	1	2	273	0	53	2	1		0	71	88	9	0	1	253	0		
Right-Turn Bypass		N	one			No	ne				No	ne		None					
Conflicting Lanes			1			1					-	l		1					
Pedestrians Crossing, p/h			0			C)			0					0				
Critical and Follow-U	Јр Неа	adwa	y Adju	stmen	t														
Approach	EB				WB				NB				SB						
Lane			Left	Right	Bypas	s Le	ft	Right		Bypass	Left	eft Right E		iss Left		Right	Bypass		
Critical Headway (s)	Critical Headway (s)			4.9763				4.9763	Т			4.9763				4.9763			
Follow-Up Headway (s)				2.6087				2.6087	Т			2.6087				2.6087			
Flow Computations,	Capa	city a	nd v/c	Ratios	;														
Approach				EB	WB			NB					SB						
Lane			Left	Right	Bypas	s Le	ft	Right	В	Bypass	Left	Right	Вура	iss	Left	Right	Bypass		
Entry Flow (v₀), pc/h				276				56	Γ			168				254			
Entry Volume, veh/h				268			54					163				247			
Circulating Flow (vc), pc/h				307				160				4		126					
Exiting Flow (v _{ex}), pc/h				12				73				90		579					
Capacity (c _{pce}), pc/h				1009				1172	Γ			1374				1214			
Capacity (c), veh/h				980				1138	Γ			1334				1178			
v/c Ratio (x)				0.27				0.05	Γ			0.12				0.21			
Delay and Level of S	ervice																		
Approach		EB				WB				NB		Т		SB					
Lane			Left	Right	Bypas	s Le	ft	Right	В	Bypass	Left	Right	Вура	iss	Left	Right	Bypass		
Lane Control Delay (d), s/veh				6.4				3.6	Γ			3.7				4.9			
Lane LOS				A				А	Γ			Α				А			
95% Queue, veh				1.1				0.2				0.4				0.8			
Approach Delay, s/veh				6.4			3.6					3.7		4.9					
Approach LOS				А				A				А				А			
Intersection Delay, s/veh LO		5.1				A													

Copyright © 2020 University of Florida. All Rights Reserved.

HCS T Roundabouts Version 7.8.5 RoundaboutsAMw.xro

Generated: 8/17/2020 10:48:18 AM

	HCS7 Roundabouts Report																			
General Information	mation																			
Analyst	RLA					-				Inters	section		George Elmer & Cattle Dr.							
Agency or Co.	ATS					(E/W S	E/W Street Name					Cattle Drive					
Date Performed	8/13/	2020			1		N		1+	N/S S	N/S Street Name					George Elmer Drive				
Analysis Year	2025				< ↓	W	≑ е s) î		Analy	vsis Time	Period (hr	s)	0.2	0.25					
Time Analyzed	PM P	eak Hou	ır With De	ev.	Pe						Hour Fac	tor		0.9	0.92					
Project Description	Georg	ge Elme	r - Tollefs	on			→ ▼ *	1		Jurisc	liction		Cit	City of Missoula						
Volume Adjustments	and	Site C	harac	teristic	s															
Approach			EB			V	VB				N	В		SB						
Movement	U	L	Т	R	U	L	Т		R	U	L	Т	R	U	L	Т	R			
Number of Lanes (N)	0	0	1	0	0	0	0 1		0		0 1 0		0	0 0		1	0			
Lane Assignment			Ľ	ſR			LTR					LTR	ł				LTR			
Volume (V), veh/h	0	1	2	146	0	24	2		1	0	265	235	49	0	1	147	1			
Percent Heavy Vehicles, %	3	3	3	3	3	3	3		3	3	3	3	3	3	3	3	3			
Flow Rate (VPCE), pc/h	0	1	2	163	0	27	2		1	0	297	263	55	0	1	165	1			
Right-Turn Bypass		N	one			No	one				No	ne		None						
Conflicting Lanes			1		1							1		1						
Pedestrians Crossing, p/h 0							0				0					0				
Critical and Follow-U	Jp Hea	adwa	y Adju	stmen	t															
Approach	EB		Τ		WE	3			NB		Т		SB							
Lane			Left	Right	Вурая	s Le	eft	Right		Bypass	Left	Left Right B		ass Left		Right	Bypass			
Critical Headway (s)	Critical Headway (s)			4.9763				4.976	53			4.9763				4.9763				
Follow-Up Headway (s)				2.6087				2.608	37			2.6087				2.6087				
Flow Computations,	Capa	city a	nd v/c	Ratios	;															
Approach				EB	WB					NB		SB								
Lane			Left	Right	Вурая	is Le	eft	Righ	nt I	Bypass	Left	Right	Вура	ass	Left	Right	Bypass			
Entry Flow (v₀), pc/h				166				30				615				167				
Entry Volume, veh/h				161				29				597		162						
Circulating Flow (v _c), pc/h				193				561	1			4	326							
Exiting Flow (v _{ex}), pc/h				58				300)			265		355						
Capacity (c _{pce}), pc/h				1133				779)			1374				990				
Capacity (c), veh/h				1100				756	5			1334				961				
v/c Ratio (x)				0.15				0.04	4			0.45				0.17				
Delay and Level of S	ervice	2																		
Approach				EB				WE	3		NB				SB					
Lane			Left	Right	Bypas	is Le	eft	Rigł	nt I	Bypass	Left	Right	Вура	ass	Left	Right	Bypass			
Lane Control Delay (d), s/veh				4.6				5.1				7.1				5.3				
Lane LOS				А				A				А				А				
95% Queue, veh				0.5				0.1				2.4				0.6				
Approach Delay, s/veh				4.6				5.1				7.1		5.3						
Approach LOS				А				A		A A										
Intersection Delay, s/veh LO		6.3				А														

Copyright © 2020 University of Florida. All Rights Reserved.

HCS T Roundabouts Version 7.8.5 RoundaboutsPMw.xro

Generated: 8/17/2020 10:48:37 AM

APPENDIX D

Turn-Lane Warrants

13.3(3)

Note: For highways with a design speed below 50 mph (80 km/h) with a DHV <300 and where right turns > 40, an adjustment should be used. To read the vertical axis of the chart, subtract 20 from the actual number of right turns.

Example

Given: Design Speed = 35 mph (60 km/h) DHV = 250 vph Right Turns = 100 vph

Problem: Determine if a right-turn lane is necessary.

Solution: To read the vertical axis, use 100 - 20 = 80 vph. The figure indicates that a right-turn lane is not necessary, unless other factors (e.g., high accident rate) indicate a lane is needed.

GUIDELINES FOR RIGHT-TURN LANES AT UNSIGNALIZED INTERSECTIONS ON 2-LANE HIGHWAYS

Figure 13.3A